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Abstract
Simulation is widely used to make model-based
predictions, but few approaches have attempted
this technique in dynamic physical environments
of medium to high complexity or in general con-
texts. After an introduction to the cognitive science
concepts from which this work is inspired and the
current development in the use of simulation as a
decision-making technique, we propose a generic
framework based on theory of mind, which allows
an agent to reason and perform actions using mul-
tiple simulations of automatically created or ex-
ternally inputted models of the perceived environ-
ment. A description of a partial implementation is
given, which aims to solve a popular game within
the IJCAI2013 AIBirds contest. Results of our ap-
proach are presented, in comparison with the com-
petition benchmark. Finally, future developments
regarding the framework are discussed.

1 Introduction
When attempting to make a suitable decision within an en-
vironment, an agent must first be able to extract data from it
via sensors (either virtual or real devices), then process this
information in a way that allows a certain level of inference
on what to do next and finally apply, if necessary, a set of
changes onto the environment or onto itself that lead to a sit-
uation that better fits the agent’s goals. Although much re-
search has been conducted over the past years, with a wide
range of successful solutions in specific domains of activity,
general purpose implementations have not been yet achieved
and most approaches require case-based parameterization to
function.

In this paper, we propose to model the decision mecha-
nisms of a virtual entity by drawing inspiration from studies
in cognitive science. To be more precise, our focus is on the
human’s anticipation ability and capability to adapt while in-
teracting.

1.1 Cognitive Approach towards Artificial
Intelligence Decision Making

To affirm that an artificial intelligence system reasons like a
human, we are required to know how humans think by ac-

quiring insight of the mechanisms of the mind. There are
several ways to achieve this: by introspection, psychological
experiments on behavior and brain imaging. This work can
help to formalize a theory of mind clear enough to make it
possible to be expressed in the form of a computer program.
The interdisciplinary field of cognitive science advances in
this direction by combining experimental psychology tech-
niques and computer models of computational intelligence.
In this context, mental simulation is a theory that appears to
be a particularly interesting approach to modelling the mech-
anisms of decision making [Hesslow, 2002; Berthoz, 1997;
2003].

1.2 Theory of Mind and Mental Simulation
The capability of an individual to assign mental states to one-
self and others is known in the literature as Theory of Mind
(ToM) [Premack and Woodruff, 1978]. Functionally, possess-
ing a model of others’ decision process which takes observa-
tions as input allows the individual to determine goals, an-
ticipate actions and infer the causes of certain observed be-
haviors. The two predominant approaches to how the deci-
sion process is represented are the Theory-Theory (TT) [Car-
ruthers, 1996], which implies a ”folk psychology” that is used
to reason about others in a detached way, and the Simulation
Theory (ST) [Goldman, 2005] which sustains that the indi-
vidual’s own decision mechanism is used for inference (sim-
ulation), using pretend input based on observations. Regard-
less the debate over which of the two constitutes the mecha-
nism of reasoning about other individuals [Michlmayr, 2002;
Fisher, 2006; Apperly, 2008], it is important to note that a
model is required to achieve anticipation functionality and
this model must be adaptable to match novel contexts and
perceptions.

Evidence of mental simulation has been studied in humans
[Buckner and Carroll, 2007; Decety and Grèzes, 2006] where
similar brain regions have been observed to become activated
when individuals perform remembering, prospection and the-
ory of mind tasks. Furthermore, research in the field of cog-
nitive science shows that mental simulation appears to serve
as a tool to understand the self and others.

Research also extends into how people use this type of sim-
ulation to mentally represent mechanical systems [Hegarty,
2004] and to reason on how these will evolve in various con-
ditions. It was suggested that the prediction ability of this



approach can be limited by the perceptual capability of the
individual and that, in complex situations, subjects cannot ac-
curately predict the precise motion trajectories, but can evalu-
ate within a reasonable margin of error what the effects would
be.

2 Related Work
Regarding the focus of research that has recently been
conducted, two main directions can be distinguished in
simulation-based approaches to artificial decision-making,
anticipation and learning.

2.1 Behavioral mental simulation
Approaches to mental simulation of behavioral traits branch
into two separate, but closely related directions, regarding the
nature of the simulation target. The first branch is focused
on modelling individuals that are highly similar to the ”self”,
case in which the agent that performs the simulation can use
its own decision system to infer knowledge about others. The
second, which could be seen as an extension of the first, at-
tempts to extrapolate the models used in the simulation to
agents with entirely different capabilities.

Imitation of kin
As claimed by ST, imitation holds an important position in in-
tention recognition, action anticipation and behavior learning.
Such an approach was implemented in Max T. Mouse [Buchs-
baum et al., 2005], an animated mouse character which uses
its own motor and action representations to interpret the be-
haviors that it observes from its friend, Morris Mouse.

Placing oneself in the context of another individual who
is very similar in terms of desires and capabilities can be
achieved by using the proprietary model of action from which
goals and intentions can be inferred. As an extrapolation of
this approach, new behavior can also be learned by associ-
ating known interaction with novel objects. However, it has
been shown by several studies in neuroscience that the em-
bodiment of an individual can be altered [Schwartz, 2004]
without impairing the ability to complete tasks using the new
configuration. Therefore, from the point of view of ST, it
is convenient for an entity to simulate similar others using its
own behavioral mechanisms, but these mechanisms must also
be able to evolve.

Representation of others
For the claim of ST to hold in the scenario where an agent
simulates other individuals that have different embodiments
than itself, the correspondence problem [Dautenhahn and Ne-
haniv, 2002; Alissandrakis et al., 2002] must be approached
in order to map others’ characteristics onto the agent’s own
structure. This technique has been used in robots that play
roles in teams and infer intentions from human actions in
order to help with the goal fulfilment [Gray and Breazeal,
2005]. Inference is achieved by mapping human movements
onto the robot’s own skeleton so that, through simulation, the
robot can determine the significance of the perceived move-
ments.

Other, more TT-inspired approaches make use of special-
ized models for their simulation targets. This category is

especially researched in combination with physical embod-
iments, such as conversational robots using 3D objects to
model their environment [Roy et al., 2004]. An imple-
mentation of a robot was achieved [Kennedy et al., 2008;
2009], which extends the ACT-R architecture [Anderson et
al., 2004] and uses a form of mental simulation to reproduce
the decision-making of team mates. In this approach, authors
rely on models of human team players from studies in cog-
nitive science to improve the performance of the automated
team mate.

The use of self and world models has become a popular
requirement, as the importance of higher cognitive traits has
been acknowledged especially when coping with novel envi-
ronments that cannot be modelled only by extrapolating from
previously-learnt knowledge, for example in the case of space
exploration robots that are bound to encounter unknown situ-
ations in their missions [Huntsberger and Stoica, 2010].

2.2 Environmental mental simulation
Another use of mental simulation is to predict the conse-
quences of actions on the physical environment. For exam-
ple, in the case of a domino scenario, the use of mental simu-
lation would allow the agent to anticipate different sequences
of falling pieces, depending on which domino was first put
in motion and the structure of the setup. This result would
require an agent to have a physical model of its environment,
including properties like mass, gravity, elasticity and friction.
It is interesting to note that when verbally presented with the
description of a physical scenario, humans tend to construct
an image of how it would visually appear in reality and more-
over, their image is influenced by their language comprehen-
sion ability [Bergen, 2005].

The mental image of the environment can be viewed as
a medium for integrating perceived information [Cassimatis
et al., 2004] and through this approach, an agent capable of
simulation based on such a model can anticipate and perform
actions in complex interactions with other agents in the envi-
ronment or with avatars controlled by humans [Buche and De
Loor, 2013].

We argue that anticipation in physical environments and in
general scenarios cannot be easily achieved with traditional
or specific reasoning systems, and that the use of simulation
as an anticipation, learning and decision-making mechanism
can greatly improve the applicability of the developed system.

2.3 Discussion
”Mental simulation” has been computationally approached
as an efficient technique for decision-making for intelligent
agents in a wide range of real world problems including the
anticipation of intruder behavior [Ustun and Smith, 2008],
simulation of cultural transmission [Axtell et al., 1996] or
public transport optimization [Fourie et al., 2012]. However,
in most cases, a specialized model is developed by domain
experts and then used in parametrized simulations to predict
the system’s future states. Moreover, for this to function, an
extended understanding of the problem is required in order to
create the models which are used for simulation.

Implementations based on ST seem to behave very well
when placed in a familiar environment with self-similar ac-



tors and are even able to extrapolate their behavior to account
for differing behaviors. However, mapping problems appear
when differences increase between the simulating agent and
its peers, and such mappings may not be trivial to find. There-
fore, in addition to being able to use itself as a theory of mind
tool, the agent must also be able to build models of dissimilar
objects or other agents.

In order for the agent to build models of its surroundings,
it requires a sensor system and suitable learning techniques.
The process of simulating an environment based on a learnt
model not only enables anticipation and constitutes the base
for decision making, but it also reinforces the model itself by
allowing the agent to detect discrepancies between the mental
image and the reality. Therefore, the creation and improve-
ment of the models can be self-propelled, through simulation.

Once the agent owns a set of models that describe the envi-
ronment and a representation of itself, also contained within
these models, then it is able to create nested simulations. A
simulation may contain the representation of the agent that
performs the simulation, where information about how the
agent itself would behave in certain contexts can be gener-
ated, or how its behavior may affect the others. We refer to
the concept of nested simulations as ”simulation in the simu-
lation”.

In this paper we propose a generic framework to model
virtual entities (section 3) that are able to use simulation in
the simulation to anticipate, learn, take decisions and act in
dynamic environments where the agent’s actions can be in-
fluenced or interrupted by other agents or humans. A partial
instance of this framework is illustrated in the Angry Birds
application (section 4).

3 Generic Framework
In light of the difficulty of decision-making in complex
dynamic virtual environments, we propose a ToM-inspired
framework that allows the agent to simulate the behaviors of
others and also of itself in different contexts. Our aim is to
exploit the advantages of simulation as a mechanism to make
predictions but also as a learning tool, by using the results
of the simulation and comparing them to the outcomes of the
real situation. This way the agent can learn and perfect its
models of the reality which it inhabits.

Our framework proposal consists in three layers of abstrac-
tion which can be regarded as asynchronous processes. The
primary level constitutes an interface between the agent and
its environment, and consists in all the mechanisms required
by the agent to interpret the environment and to act upon it.
The imaginary world is a collection of ”mental simulations”
that the agent uses to anticipate what will happen in the fu-
ture, based on its current knowledge. These simulations also
allow the agent to take decisions in order to achieve a set of
goals. The agent’s knowledge is represented in the abstract
world, which is constantly updated through comparison be-
tween anticipations and real events. A conceptual overview
of the framework is illustrated in Figure 1.

In an ideal case, where the agent’s models precisely match
the environment to be simulated, the problem of predicting
what will happen next is solved by simulating the model in

Figure 1: Conceptual overview of the framework

advance, at a higher speed. Having computed the natural
outcomes of a situation, one can then simulate the effects of
agent’s actions in the given context. This leads to a tree of
possible decisions with associated outcomes, which resolves
to a search problem in the space of simulated environment
states.

However it so happens that, in most real-world scenarios,
the ideal case in which the model is perfectly correct almost
never occurs. Therefore, learning algorithms must be used to
constantly improve the models. In other words, the correct-
ness of the result depends on how accurate the simulation is,
which in turn is dependent of the capability of the model to
reflect the rules of the simulated environment.

Given evidence that current learning algorithms are more
efficient for certain problems while failing for others, but are
however complementary, having a framework that can exper-
iment with multiple learning algorithms would have benefi-
cial influence on the resulted models. Therefore, we propose
a heterogeneous architecture of model generation algorithms
which can participate in a selection process, based on the cor-
rectness of the resulted models regarding evidence from re-
ality. This error evaluation can be done by computing the
differences between the state of the real environment and the
associated simulated state, at a given time.

While aiming to achieve a completely autonomous agent
that can use simulation to create its own models through
learning from its environment, it is also practical to allow
models developed by domain experts to be integrated, by ex-
ploiting the heterogeneous approach of this framework. This
way, depending on context, certain parts of the environment
can be simulated using human-made models, therefore creat-
ing the opportunity to use the framework as a test bed to eval-
uate the efficiency of automated learning algorithms in given
contexts, as well as attempt to improve existing models.

4 Application: Angry Birds Agent
In order to evaluate this architecture, we implemented a mini-
malistic instance of the simulation framework within an agent
designed to play the Angry Birds game. Figure 2 illustrates



how the instantiated agent fits into the specifications of the
proposed framework, while also mentioning the portion that
is to be implemented in a future version (the learning module,
drawn in faded color in the figure).

Figure 2: Instantiation of the proposed framework for the An-
gry Birds bot

We consider that the AIBirds contest1 represents an op-
portunity to test and evaluate this framework instance in the
context of a physical environment with moderately stochastic
results which are due to the unavailability of the game’s inner
mechanisms. In this section we describe the implementation
of this agent, with regard to the proposed architecture.

4.1 Interface with the Game
In the 2013 edition of the AIBirds contest, a naive agent [Ge
et al., 2013] was made available to the participants, which
contains a set of tools to detect the locations of objects in the
Angry Birds scene, and a simple decision algorithm that con-
sists in randomly choosing a pig and shooting the bird on the
trajectory that intersects the chosen pig. Object detection is
limited to acquiring the bounding boxes, or minimal bound-
ing rectangles (MBR), that are aligned to the game coordinate
system.

In order for the simulation to reflect the game environment,
one must take into account boxes that are rotated either as re-
sult of collision or that being their initial state. Our approach
to this problem was to improve the existing algorithm by tak-
ing into account the already calculated positions for each ob-
ject, computing the set of pixels that make up the object using
a filling algorithm, and fitting the minimum rectangle onto
the convex hull of each pixel set by iterating over all edges of
the hull. Results of this approach are illustrated in Figure 3,
where (c) represents an overlay of the detected pixels (white)
and the points of the convex hull (black), and (d) shows the
minimum rectangles fitted on the convex hulls, which also
represent the simulation objects (image taken from a render-
ing of our virtual scene).

1AIBirds contest website: http://www.aibirds.org

Figure 3: Obtaining correct object positions: (a) original
scene image, (b) default bounding boxes, (c) improved al-
gorithm, (d) obtained virtual reconstruction

Additional to this detection process, the dimensions of de-
tected rectangles are equalized with similar instances, based
on the fact that the game uses fixed size objects.

Furthermore, because it is possible for the reconstruction
to be unstable, objects may fall without being touched. To
avoid such scenarios, the agent makes the assumption that the
configuration in which the environment is found before a shot
is a stable one. Therefore, objects are held in place within the
simulation, and must become ”active” in order to move. At
the start of the simulation, only the shooting bird is active,
then it activates other objects upon collision. In other words,
each object becomes active if a collision happened between
itself and an already active object.

Another approach [Ge and Renz, 2013] to extracting gen-
eral solid rectangles (GSR) from MBRs consists in defining
an algebra to describe the GSRs and computing all possible
contact combinations and finding a stable configuration that
satisfies all the requirements. Unlike our approach, it is in-
teresting to note that using an algebra to reason directly on
MBRs does not require further analysis of the original image.
However, due to the assumption that the MBRs are correct,
the case in which one object is not detected can trigger a sig-
nificantly different result, as it may have played an important
role in the scene configuration. Furthermore, in the rare situ-
ation where MBRs are vertically aligned, there may exist two
mirrored possibilities to represent the GSRs.

Using original image analysis to compute GSRs is arguably
more computationally expensive, but it allows to limit detec-
tion errors to a local scope. Moreover, by using a convex hull
to determine the rectangles, the number of points of the hull
can be used to decide, with an acceptable accuracy, which
objects are rectangular and which are circular (i.e. circular
objects have more hull vertices than rectangular objects).

4.2 Knowledge Representation
Once detected, objects are mapped onto the agent’s knowl-
edge consisting of a set of classes that represent physical
objects and materials. All objects in the simulation are an-
imated by a two-dimensional physics engine, which corre-
sponds to a domain expert model integration within the pro-
posed framework. The knowledge representation is inspired
from the object-oriented paradigm, thus offering the possi-
bility of modelling, among others, attributes and inheritance.
Each type of bird (red, yellow, etc.) inherits the main Bird
class behavior, which in turn is a physical Object. The goal
of this representation is to be able to accurately describe the
effects of performed actions and the environment evolution in
time.



This representation allows different behaviors to be easily
assigned to sets of instances. In the case of this application,
the values of attributes are empirical in origin and not auto-
matically learned, for convenience. However, this will be the
ultimate goal of the proposed framework.

4.3 Simulation in the Simulation
Once the environment structure is interpreted, the agent will
use its imaginary world to create a number of simulations that
differ by a small shooting angle (Figure 4).

Figure 4: Simulation tree with two levels: trajectories and tap
times

The depth of the simulation tree can be increased, by
adding the ”tap” function which triggers special behavior in
some types of birds. For each shooting angle, the agent is
able to choose a time to perform the tap which consists in
another array of possibilities, therefore adding another level
in the simulation tree (Figure 4). This is done similarly to
the first level, through simulation duplication. This method
proves to be computationally inexpensive, as the initial ob-
ject recognition and mapping are not remade, but their results
are copied and simulated in another way (eg. different angles
or tap times, but with the same initial scene configuration).
In the simulations, a special bird behavior triggers similar ef-
fects as in the real game, for example blue birds spawn new
instances at different angles, yellow birds gain a speed boost,
black birds explode and white birds shoot projectiles down-
wards. This way, the model can be modified to better fit the
game without changing the decision making process.

Based on the results of the simulations, the agent will
choose one which best suits its goal: to destroy pigs. How-
ever, the mere evaluation of how many pigs are killed in the
simulation does not prove to give the most successful results.
This issue is not because the selection process is incorrect,
but because the model of the environment is not completely
accurate. This causes the simulations to give similar but not
precise outcomes compared to the actual game scenario. For
example, it may happen that in one simulation, conditions are
just right for a record number of pigs to be killed, although it
is not the same case in the real game; this leads to a erroneous
score record, and therefore this simulation is incorrectly cho-
sen as the final decision.

Coping with uncertainty caused by a partially correct
model can be addressed by considering in advance that results
are stochastic in nature, and therefore taking into account a
range of results instead of isolated cases. In other words, in-
stead of evaluating each simulation by its final result, one can
evaluate a set of results from minimally different simulations
to obtain a probabilistically good decision. This way, isolated
cases of false success can be pruned out by the selection al-

gorithm, leaving higher chances for the agent to take a truly
efficient decision.

4.4 Preliminary Results
Our implementation currently creates a number of 106 simu-
lations which differ by a shooting angle of 0.01 radians from
each other. Normal simulation time is approximately 15 sec-
onds, however the simulations are executed at three times the
normal speed, due to the time limitation imposed by the con-
test rules.

We compare our implementation with the default ”naive”
agent provided by the competition organizers. This choice for
benchmark was made due to the fact that the current default
agent is an extension of the winning agent of the 2012 edition
of the contest, that provides an improvement of the visual
recognition module.

Because the default agent is based on a random target se-
lection, and this may influence the resulted scores, we lim-
ited the levels used in our comparison to the first 9 levels of
the freely available ”Poached Eggs” episode of Angry Birds,
which only feature red birds that do not have any special abil-
ity.

Lvl Trial 1 Trial 2 Trial 3 Trial 4 Avg
1 30090 28960 28970 28970 29247.5
2 42650 34160 34160 43180 38540.0
3 31670 40730 40260 40260 38230.0
4 28470 18870 28160 28330 25957.5
5 65140 64500 64710 63510 64465.0
6 34010 24450 25630 24490 27145.0
7 20020 29390 27680 22910 25000.0
8 38280 36170 58010 38650 42777.5
9 32870 31770 32930 29090 31665.0

tot. 323200 309000 340520 319390 323027.5

Table 1: Scores of the default naive agent

After evaluating the naive agent that was provided by the
competition organizers (Table 1), we found it to fail a total of
22 times while playing 4 trials of 9 levels each. In compari-
son, the scores of the agent proposed in this paper are shown
in Table 2 and exhibit a 10.9% average improvement over the
naive agent, and only 4 total failures to finish a level.

Lvl Trial 1 Trial 2 Trial 3 Trial 4 Avg
1 32350 32350 32330 32330 32340.0
2 60820 52070 60630 51530 56262.5
3 42630 42630 41820 42630 42427.5
4 28120 28120 28430 28120 28197.5
5 64330 69100 63520 58070 63755.0
6 24470 33510 26270 33510 29440.0
7 33200 22660 23300 31940 27775.0
8 34710 47520 39120 44820 41542.5
9 24370 40010 40920 41440 36685.0

tot. 345000 367970 356340 364390 358425

Table 2: Scores of the simulation in the simulation agent



The most failures of the naive agent were on the 7th level
(10 failures) and the second most on the 4th level (4 failures).
Our implementation also experienced difficulty in level 7 but
with only 3 failures, and on level 9 with only one failure.

During the trials, the situation occurred where our agent
obtained the same score on two or more attempts. Identical
scores are due to the same decision taken more than once,
as the visual recognition of the objects in the scene returned
the same results. It is important to note that most of these
situations occurred when the agent solved the level using one
bird (levels 1, 3 and 4). An exception to this rule was level 6,
where due to the lower number of objects, the scene tends to
give the same results after the first shot. However, this shows
that given exactly the same conditions, the simulations are
stable enough to output the same decision for the agent.

Tests show that errors in the model are bound to make the
agent take less efficient decisions, because the simulations do
not correctly reflect the game reality. However, when the re-
construction has a higher level of correctness, the agent is
able to find the most effective strategy to complete the game,
as shown in Figure 5 which illustrates the second level of the
freely available ”Poached Eggs” episode of Angry Birds.

Figure 5: Best solution for Level 2 of ”Poached Eggs”
episode, found by our implementation (overlaid original state
and highlighted trajectory)

These results indicate that it is possible to take good deci-
sions even if the model of the environment does not perfectly
match the game environment. However, to achieve such good
results in the majority of scenes, further efforts must be made
to improve the model.

5 Conclusions and Future Work
In this paper we have described a generic framework that ad-
dresses the problem of decision-making, learning and antici-
pation in dynamic environments. Our approach is motivated
by the need of a non-specific framework that can be used in
multiple contexts and that is open to heterogeneous models to
be inputted or learned, in order to maximize the potential of
existing techniques for problem solving.

The architecture of the proposed framework consists in
three main components that can be executed in parallel and
revolve around the concept of simulating events in advance,
which allows not only for anticipating results, but also for
learning and improving the models based on the differences
observed between the simulations and the real environment.
We also consider that employing multiple models to describe
the entities that populate the environment will build the basis
of a generic selection system of most suited models, which
would lead to a continuously improving performance of the
system.

A version of the current implementation will be submitted
to the IJCAI2013 AIBirds contest to evaluate the efficiency
of this approach in this context. For this, we will focus espe-
cially on the game interface module and the special bird abili-
ties. This implementation only performs environment mental
simulation (section 2.2).

As future development of the proposed architecture, we in-
tend to make use of a knowledge and procedural behavior
representation framework such as MASCARET [Chevaillier
et al., 2011], which would provide a suitable meta-model for
our framework. Using this approach, structural and behav-
ioral models can be inputted by a domain expert or automat-
ically generated from within the framework. Our goal is to
obtain an agent that is able to reason and anticipate complex
situations such as those that occur in virtual environments for
training [Querrec et al., 2003]. The general-purpose of the
solution will be further tested using various environments, in-
cluding the attempt to exit the virtual via a robotic embodi-
ment, although this implies additional interface-related chal-
lenges.

Furthermore, as one of the drawbacks of our current in-
stance is that it does not contain automatic learning capability
(i.e. the Abstract World layer of the framework), we intend to
develop such functionality in an extended implementation of
the proposed framework.

We consider that one of the most important challenges in
this approach stems from the difficulty of correctly modelling
the real environment and therefore through automatic learn-
ing (automatic model amelioration), differences between the
model and the reality will be diminished, leading to an im-
provement in decision efficiency.
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