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Abstract
Angry Birds is a popular video game where the task
is to kill pigs protected by a structure composed of
different building blocks that observe the laws of
physics. The structure can be destroyed by shoot-
ing the angry birds at it. The fewer birds we use and
the more blocks we destroy, the higher the score.
One approach to solve the game is by analyzing
the structure and identifying its strength and weak-
nesses. This can then be used to decide where to hit
the structure with the birds.
In this paper we use a qualitative spatial reasoning
approach for this task. We develop a novel qualita-
tive spatial calculus for representing and analyzing
the structure. Our calculus allows us to express and
evaluate structural properties and rules, and to infer
for each building block which of these properties
and rules are satisfied. We use this to compute a
heuristic value for each block that corresponds to
how useful it is to hit that block. We evaluate our
approach by comparing its performance with the
winner of the recent Angry Birds AI competition.

1 Introduction
Qualitative spatial representation and reasoning has numer-
ous applications in Artificial Intelligence including robot
planning and navigation, interpreting visual inputs and un-
derstanding natural language [Cohn and Renz, 2008]. In re-
cent years, plenty of formalisms for reasoning about space
were proposed [Rajagopalan, 1994; Liu, 1998; Renz and
Ligozat, 2005]. An emblematic example is the RCC8 alge-
bra proposed by Randell et al. [1992]. It represents topo-
logical relations between regions such as ”x is disconnected
from y”; however, it is unable to represent direction infor-
mation such as ”x is on the right of y” [Balbiani et al.,
1999]. The Rectangle Algebra(RA) [Mukerjee and Joe, 1990;
Balbiani et al., 1999], which is an extension of the Interval
Algebra(IA) [Allen, 1983], can express orientation relations
and at the same time represent topological relations, but only
for rectangles. When we want to reason about multiple as-
pects of relations between regions, a possible method is to
combine several formalisms. For example, when we want to
reason about topology and direction relations of regions with

arbitrary shapes, we can combine RCC8 and RA. It has been
shown that the problem of deciding consistency of a joint ba-
sic network of RCC8 and RA constraints is still in polyno-
mial time [Liu et al., 2009]. However, if we only consider
the maximum bounding rectangles(MBR) of regions, RA is
expressive enough to represent both direction and topological
information.

RA is designed for reasoning about rectangular objects in
2-dimensional space whose sides are parallel to the axes of
some orthogonal basis. However, when we consider a 2-D
structure of such objects under the influence of gravity, we
need to be able to represent information about the stability of
the structure. Ideally, we want a representation that allows us
to infer whether the structure will remain stable or whether
some parts will move under the influence of the gravity or
some other forces (e.g. the structure is hit by external ob-
jects). Additionally, if the structure is regarded as unstable,
we want to be able to infer the consequences of the instabil-
ity, i.e., what is the impact of movements of the unstable parts
of the structure.

The Rectangle Algebra is not expressive enough to reason
about the stability or consequences of instability of a struc-
ture. For example, in Fig. 1(a) and (b), assume the density
of the objects is the same. The RA relation between object 1
and object 2 in these two figures are both (start inverse, meet
inverse), but obviously the structure in figure 1(a) is stable
whereas object 1 in (b) will fall. In order to make such distinc-
tions, we need to extend the granularity of RA and introduce
new relations that enable us to represent these differences. In
this paper, we introduce an extended Interval Algebra (EIA)
which contains 27 relations instead of the original 13. We use
the new algebra as a basis for an extended Rectangle Algebra
(ERA), which is obtained in the same way as the original RA.
Depending on the needs of an application, we may not need
to extend RA to 27 relations in each dimension. Sometimes
we only need the extended relations in one axis. Thus, the ex-
tended RA may include 13 × 27, 27×13 or 27×27 relations
depending on the requirement of different tasks.

We built an agent based on this model to participate the An-
gry Birds competition1 which aims to play the Angry Birds
game automatically and rationally. The result shows that the
agent based on this model is able to interpret low-level infor-

1http://ai2012.web.cse.unsw.edu.au/abc.html



Figure 1: Two configurations with the same RA relation
(si,mi)

mation from the scene or video input as higher level semantic
descriptions [Fernyhough et al., 1999]. Moreover, although
qualitative spatial representation and reasoning has been ap-
plied to some simple physical systems to do some common
sense reasoning [Klenk et al., 2005], there is few work on
reasoning on more complicated physical models; thus, this
paper is an exploration of this area.

2 Interval Algebra and Rectangle Algebra
Allen’s Interval Algebra defines a set Bint of 13 basic rela-
tions between two intervals (see Fig. 2). It is an illustrative
model for temporal reasoning. Denote the set of all relations
of IA as the power set 2Bint of the basic relation set Bint. The
composition (◦) between basic relations in IA is illustrated in
the transitivity table in Allen [1983]. The composition be-
tween relations in IA is defined as R ◦ S = ∪{A ◦ B : A ∈
R,B ∈ S}.

Figure 2: The 13 basic relations of the Interval Algebra

RA is an extension of IA for reasoning about the 2-
dimensional space. The basic objects in RA are rectangles
whose sides are parallel to the axes of some orthogonal ba-
sis in 2-dimensional Euclidean space. The basic relations
of RA can be denoted as Brec = {(A,B)|A,B ∈ Bint}
The relations in RA are defined as the power set of Brec
The composition between basic RA relations is defined as
(A,B) ◦ (C,D) = (A ◦ C)× (B ◦D).

3 The Extended Rectangle Algebra (ERA)
In order to express the stability of a structure and reason about
the consequences of the instability in a situation which ob-

serves physical rules, we extend the basic relations of IA from
13 relations to 27 relations denoted as Beint (see Fig. 3).

Figure 3: 27 basic relations Beint for extended IA

Definition 1 (The extended IA relations). We introduce the
centre point of an interval as a new significant point in addi-
tion to the the start and end points. For an inteval a, denote
centre point, start point and end point as ca, sa and ea, re-
spectively.
1. The ’during’ relation has been extended to ’left during’,
’centre during’ and ’right during’ (ld, cd & rd).
• ”x ld y” or ”y ldi x” : sx > sy, ex ≤ cy

• ”x cd y” or ”y cdi : sx > sy, sx < cy, ex > cy, ex < ey

• ”x rd y” or ”y rdi x” : sx ≥ cy, ex < ey

2. The ’overlap’ relation has been extended to ’most over-
lap most’, ’most overlap less’, ’less overlap most’ and ’less
overlap less’(mom, mol, lom &lol).
• ”x mom y” or ”y momi x” : sx < sy, cx ≥ sy, ex ≥
cy, ex < ey



• ”x mol y” or ”y moli x” : sx < sy, cx ≥ sy, ex < cy

• ”x lom y” or ”y lomi x” : cx < sy, ex ≥ cy, ex < ey

• ”x lol y” or ”y loli x” : cx < sy, ex > sy, ex < cy

3. The ’start’ relation has been extended to ’most start’ and
’less start’ (ms & ls).

• ”x ms y” or ”y msi x” : sx = sy, ex ≥ cy

• ”x ls y” or ”y lsi x” : sx = sy, ex > sy, ex < cy

4. Similarly, the ’finish’ relation has been extended to ’most
finish’ and ’less finish’ (mf & lf).

• ”x mf y” or ”y mfi x” : sx > sy, sx ≤ cy, ex = ey

• ”x lf y” or ”y lfi x” : sx > cy, sx < ey, ex = ey

Denote the set of relations of extended IA as the power
set 2Beint of the basic relation setBeint. Denote the set of
relations of extended RA as the power set 2Berec of the basic
relation setBerec.

Note that EIA can be expressed in terms of INDU rela-
tions [Pujari et al., 2000] if we split each interval x into two
intervals x1 and x2 that meet and have equal duration. How-
ever, this would make representation of spatial information
very awkward and unintuitive. There is also some similarity
with Ligozat’s general intervals [Ligozat, 1991] where inter-
vals are divided into zones. However, the zone division does
not consider the half point.

4 Application of extended RA in Angry Birds
4.1 Rules based on the extended RA relations for

analysing the structure
With these extended RA relations, it is possible to build a
set of rules to determine some properties of a structure such
as stability of a simple structure or consequences after some
external influences act on the structure. Then, integrating all
the proposed rules, we are able to do some further inferences
to predict the consequences of a shot and calculate a a
heuristic value. This value will suggest which object is a
proper target to hit to maximize the damage. Assume the
objects are only rectangles whose sides are parallel to the
axes of some orthogonal basis.
Rule 1. Rules for determining stability
We will now specify rules that determine for each target
object whether it is stable. Empirically, if we do not consider
the impacts of the supportees of an object, there are three
situations that an object will remain stable.

Rule1.1
The target object is just on the ground => object is stable

Rule1.2
For the target object x ∈ O(O is the set of all objects in the
structure.), ∃ y, z∈ O:
Rx,y ∈ {momi,moli, lomi, loli,msi, lsi, ldi} × (mi)
andRx,z ∈ {mom,mol, lom, lol,mfi, lfi, rdi} × {mi}
=> x is stable

This rule describes the target object with supporters on
both left and right sides stable.

Rule1.3
For the target object x, ∃y :
Rx,y ∈ {ms,mf,msi, ls,mfi, lf, cd, cdi, ld, rd,mom,
momi, lomi,mol} × {mi}
=> x is stable

This rule illustrates that if vertical projection of the mass
centre of the target fall into the region of its supporter, it is
stable.

Rule1.2 & 1.3 only consider the impacts of the supporters.
However, sometimes the supportees may also influence the
stability. Thus, we can add more rules to determine more
complex situations.

Rule1.4
For the target object x, ∃y :
Rx,y ∈ {ld, cd, rd,ms, ls,mf, lf, eq} × {mi}
or ∃ y, z:
Rx,y ∈ {momi,moli, lomi, loli,msi, lsi} × (mi)
Rx,z ∈ {mom,mol, lom, lol,mfi, lfi} × {mi}
=>x will remain stable no matter where its supportees are.
In this rule, the target object has at least one supporters on

Figure 4: Illustration of Rule 1.2, 1.3 & 1.4

each side, and the edges of the supporters exceed the edges of
the target object. Thus, no matter where the supportees are,
they will not affect the stability of the target. Fig.4 illustrates
Rule1.2, 1.3 & 1.4.

Rule1.5
∀y ∈ O :
Rx,y /∈ {ld, cd, rd,momi,moli, lomi, loli,ms,msi, ls,
lsi,mf, lf, eq} × {mi}
and Rx,y ∈ {ldi, cdi} × {mi}
and ∃z : Rx,z ∈ {mom,mol, lom, lol,mfi, lfi, rdi}×(mi)
and ∃u ∈ O,Rx,u ∈ {ldi,moli, lsi} × {m}
=>x may be unstable.

This rule above can explain the configuration in fig. 5(a)
which is that a supportee can make a stable object unstable.

Rule1.6
∀y ∈ O :
Rx,y /∈ {ld, ldi, cd, cdi, rd,momi,moli, lomi, loli,ms,
msi, ls, lsi,mf, lf, eq} × {mi}
and ∃z : Rx,z ∈ {mom,mol, lom, lol,mfi, lfi, rdi}×(mi)
and ∃u ∈ O,Rx,u ∈ {mom,mol, lol} × {m}
and ∃v ∈ O,Ru,v ∈ {ms,mf,msi, ls,mfi, lf, cd, cdi,
ld, rd,mom,momi, lomi,mol} × {mi}
=>x may be stable.



This rule explains that a supportee can force its support to
be stable(example see fig. 5(b)).

In the above two rules, ”may” is used to express the un-
certainty of these situations, because in a qualitative way, we
cannot always tell what will exactly happen.

Figure 5: Configurations that need to consider the effects of
supportees

Rule 2. Rules for determining reachability of the bird
In Angry Birds, we need to shoot a bird at the structure. When
choosing the target, we need to consider which object can be
reachable directly for the bird.
The rules for determining the reachability of the bird is shown
below:

For a target object x ∈ O, Rx is the set of ERA relations
between x and all other objects

∀Rx,y ∈ Rx, y 6= x :
Rx,y ∈ {b, ldi, cdi, rdi,mom,mol, lom, lol,moli,momi,
m,ms, ls,msi, lsi,mfi, lfi, eq} × {A,A ∈ Reint}
∪{a, ld, cd, rd, lomi, loli,mi,mf, lf}×{b, a,m,mi,mom,
mol, lom, lol,momi,moli, lomi, loli, ldi, cdi, rdi,msi, lsi,
mfi, lfi}
=> The target x is directly reachable for a bird

This rule explains that if there is no other object blocks
the path between the bird and the target object, the target is
directly reachable by the bird.

Rule 3. Rules for detecting support and sheltering struc-
tures
The entire structure in Angry Birds game is often large and
even in some levels all the objects in the world are constructed
into only one structure. As can be found in most levels, many
pigs are set on support structures sometimes with multi-level
supporters. Then a good idea to kill the pig (if not directly
reachable) is to destroy the support structure and the pig will
probably die. Another useful substructure is the sheltering of
the pigs. The reason is straightforward, if a pig is not reach-
able, there must be some objects that protect it; these objects
form the sheltering structure of the pigs. Similarly, destroy-
ing the sheltering structures can either kill the pig or make the
pig directly reachable to the bird.

Specifically, in order to separate the support structure of
a pig from the larger structure, it is necessary to include the
depth information of the supporters(see fig. 6 the illustration
of support structure with depth). This is helpful when only
considering the most essential supporters or only several lay-
ers of supporters are required. The rules for determining the

direct supporter can be expressed using original RA relations:

Rule 3.1
For objects x,y ∈ O
Rx,y ∈ {d, di, o, oi, s, si, f, fi, eq} × {m}
=> y directly supports x

This rule describes that if two objects vertically contact,
the nether object supports the other one.

Figure 6: Illustration of support structure

Using the rule above, we can further get the supporters of
the supporters, then we can collect all direct or indirect sup-
porters of a certain object.

Similarly, a sheltering structure consists of the closest pro-
tection objects of the pig that can avoid the pig from a di-
rectly hit from each direction including the hit from back-
ward. Specifically, a sheltering structure of a pig could con-
sist of left, right and roof sheltering objects. In order to get
the sheltering structure of a certain object (usually a pig), the
first step is to get the closest object from the left side of the
queried object; then, get the supportee list of the object (sim-
ilar process as getting the supporter list); after that, get the
right closest object with its supportee list. The next step is to
check if the two supportee lists have objects in common, if so,
pick the one with smallest depth as the roof object of the shel-
tering structure; if not, there is no sheltering structure for the
queried object. If a roof object is found, also put the support-
ees of both the left and right closest objects with smaller depth
than the roof object into the sheltering structure. Finally, put
the supporters of both left and right closest objects which are
not below the queried object into the sheltering structure.

The rules expressed in extended RA relations for deter-
mining sheltering objects consists of three parts (These set of
rules can also be expressed in original RA):

Rule 3.2 The rules for getting potential left and right
sheltering objects(take left side as an example)
For an object x ∈ O, denote Sl as the set of potential left
sheltering objects of x.
∀y ∈ O,
Rx,y ∈ {b, d, di, o,m, fi} × {d, di, o, oi, s, si, f, fi, eq}
=> put y into Sl

Rule 3.3 The rules for choosing closest sheltering ob-
jects
∀y, z ∈ Sl,
Ry,z ∈ {b, d, o,m, s} × {A,A ∈ Reint}
=> delete y from Sl, otherwise delete z



Finally, the closest objects will remain.

4.2 The integration of the rules to evaluate a shot
With the four rules described above, we are able to integrate
the rules and further infer the possible consequences after a
shot has been made. In order to predict the final consequence
of an external influence on the structure, the direct conse-
quence and its following subsequences should be analysed in
detail. Funt suggested a similar method to simulate the con-
sequence of a structure with a changed object which assumes
that the changed object disappears and chooses the most sig-
nificant unstable object to simulate the consequence [Funt,
1987]. In this case, a certain type of object can be affected by
four configurations.
Configuration 1 The target object in the structure is hit di-
rectly by another object. The direct consequence will be in
three types which are destroyed, falling and remaining stable.
Empirically, the way to determine the consequence of the hit
depends on the height and width ratio of the target. For exam-
ple, if an object hits a target with the height and width ratio
larger than a certain number (such as 2), the target will fall
down. And this ratio can be changed to determine the con-
servative degree of the system. In other words, if the ratio is
high, the system tend to be conservative because many hits
will be determined as no influence on the target. Moreover,
if the external object hits a target with the height and width
ratio less than one, the target itself will remain stable tem-
porarily because the system should also evaluate its supporter
to determine the final status of the target. In some situations,
we may also be concerned with the destruction of the target,
such as in the Angry Birds game. After deciding the direct
consequence of the hit, the system should be able to suggest
further consequences of the status change of the direct target.
Specifically, if the target is destroyed, only its supportees will
be affected. If the target falls down, the configuration will be
more complex because it may influence its supporters due to
the friction, supportees and neighbours. If the target remains
stable temporarily, it will also influence its supporters and its
supporters may again affect it from the further simulation.
Configuration 2 The supportee of the target object falls down
which is a less complex one. Similar to the process that set the
height and width ratio to determine the stability of an object,
this target object’s stability is also represented by the ratio but
the number should be larger (about 5) because the influence
from supportee is much weaker than it from direct hit. If the
target is considered as unstable, it will fall down and affect is
neighbours and supporters; otherwise, it will only influence
its supporters (see fig. 7).

Figure 7: Configuration 2

Configuration 3 The supporter of the target object falls
down. Here a simple structure stability check process (apply-
ing Rule 1) is necessary because after a supporter falls, the
target may have some other supporters and if the projection
of its mass centre falls into the areas of the other supporters,
it also can stay stable. Then, if the target remains stable, it
again will only affect its supporters due to the friction; oth-
erwise, it may fall and affect its supporters, supportees and
neighbours (see fig. 8(a)).
Configuration 4 The supporter of the target is destroyed.
This is more like a sub configuration of the previous one. If
the target can remain stable after its supporter destroyed, it
may fall and affect its supporters, supportees and neighbours
(see fig. 8(b)).

Figure 8: Configuration 3&4

4.3 Calculation of the heuristic value
Then, with all the affected objects in a list, the quality of the
shot can be evaluated by calculating a total score of the af-
fected objects. The scoring method is defined as: if an object
belongs to the support structure or the sheltering structure of a
pig, 1 point will be added to this shot; and if the affected is it-
self a pig, 10 points will be added to the shot. After assigning
scores to shots at the objects, the target with highest score is
expected to have the largest influence on the structures con-
taining pigs when it is destroyed. Then, based on different
strategies, the agent can choose either to hit the reachable ob-
ject with highest heuristic value or generate a sequence of
shot in order to hit the essential support object of the struc-
ture.

Algorithm 1 illustrates the whole process for evaluating a
shot at all possible targets.

We first extract the ERA relations between all objects and
then match the rules for all relevant combinations of objects.
Thus the process of evaluating the significance of the targets
is straightforward and fast.

5 Evaluation
We built an agent that uses the rules described in Section re-
fApplication of extended RA in Angry Birds to perform a
structural analysis of a given Angry Birds scenario and to
determine which target to hit next. The organizers of the
previous Angry Birds AI competition (http://ai2012.
web.cse.unsw.edu.au/abc.html) provided a com-
puter vision system that detects the mimimum bounding
boxes (MBB) of all objects of an Angry Birds screen shot
and a classification of each object (pig, bird, wooden block,
ice block, etc). We take these boxes as input and evaluate



Algorithm 1 process of evaluating a shot
for all Objects o in the structure do
init ongoing list ′ol′ and affected list ′al′

add o into al
applying rule 1 and 3 (integrating in the 4
configurations) to get affected objects ′ao′

add all ao into ongoing list
for all ongoing objects ′oo′ in ol do
add oo into al and delete oo from ol
for all objects ao′ affected by oo′ do

if ao′ /∈ al then
add ao into ol

end if
end for
if ol = ∅ then

break
end if

end for
calculate heuristic value of o
get stabilityofeachobject

end for
output a list of heuristic values for shots at all

target objects in descending order with reachability

each block according to our rules. For example, in the Angry
Birds level shown in fig. 9, part of the output for evaluating
the shot(see fig. 10) illustrates that the agent is able to in-
fer that the essential supporter of the structure is object 19,
and among the reachable objects, hiting object 6 can result in
maximum damage to the structure.

Figure 9: A sample level in Angry Birds

Our rules work well when the given MBBs closely resem-
ble the actual blocks. When blocks are leaning to the left
or right, our rules only provide a vague approximation of
the real structural situation. Also, our rules treat each block
equally, i.e., we do not distinguish between blocks of dif-
ferent materials that might have different mass or density,
but purely focus on structural properties. Despite this, our
agent performs quite well when comparing it to the win-
ner of the last Angry Birds AI competition. We compared
our agent with the winning agent on the publically available
Poached Eggs levels (chrome.angrybirds.com). Our
agent was able to achieve higher scores on average and to
solve more levels than last years winner. Fig. 11 demon-
strates the results of some sample levels from our agent

Figure 10: Part of the output from for shot evaluation

and the winning agent. These levels shown in the figure
are all constructed with complex structures, thus, in these
levels, our agent performed much better than the winning
agent. We compare our agent with the benchmarks given at
www.aibirds.org/benchmarks.html for all partic-
ipants of the 2012 competition. Our agent obtained a total
score of 954960 over the first 21 poached eggs levels, which
is higher than any other agent.

Figure 11: Results comparison

6 Discussion
In this paper we have introduced an extended rectangle al-
gebra useful for representing and reasoning about stability
and other properties of 2-dimensional structures. By split-
ting some basic interval relations into more detailed ones, we
obtained 27 interval relations in each dimension that can ex-
press the physical relations between rectangular objects more
precisely. We used the new algebra for defining some useful
structural rules regarding properties such as stability, reach-
ability, support, and shelter. We tested the usefulness of our
rules by designing an agent that performs a structural anal-
ysis of Angry Birds levels. Based on these rules, we pre-
dict for each block the consequences if it gets hit and cal-
culate a heuristic value that determines the usefulness to hit
the block. We then shoot at the block with the highest value
that is reachable with the current bird. A comparison with the
winner of the last Angry Birds AI competition shows that our
structural analysis can lead to a successful strategy for solv-
ing Angry Birds. It demonstrates the usefulness of qualitative
spatial representation and reasoning approaches for solving
real physical problems.



However the rules for reasoning about the consequences
of a shot are still preliminary. The mechanical constraints
for the motion of the objects, especially for the transfer of
the motion between objects, need to be refined. Nielsen’s
approach[Nielsen, 1988] to analyse possible motions is suit-
able for our case. For example we could also consider trans-
lational motion and rotate motion instead of the simple ’fall’.
Also, objects that are not equivalent to their MBRs, that is
objects that can lean to the left or right may need to be dif-
ferently treated. We will also consider different materials of
objects in the next stage.
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