Combining Qualitative Spatial Representation Utility Function and Decision
Making Under Uncertainty on the Angry Birds Domain

Leonardo Anjoletto Ferreira!?, Guilherme Alberto Wachs Lopes?, Paulo Eduardo Santos?
"Universidade Metodista de Sdo Paulo
Sao Bernardo do Campo - Sao Paulo - Brazil
2Centro Universitario da FEI
Sao Bernardo do Campo - Sao Paulo - Brazil
leonardo.ferreira@metodista.br, guilhermewachs @ gmail.com, psantos @fei.edu.br

Abstract

Angry Birds is a well known game in which
a player must shoot birds in order to kill pigs.
In 2012, Australia National University released a
framework that allows the developement of au-
tonmous agents that are able to play the Google
Chrome’s version of Angry Birds. This paper
presents the development of an autonomous agent
for playing Angry Birds using concepts of qualita-
tive spatial representation, utility function and de-
cision making under uncertainty. The agent had a
good overall performance during testing and in the
levels that it completed in the benchmark, but it also
had problems when dealing with the configurations
of some levels.

1 Introduction

The Angry Birds game has been well known for some time
and has had a great success in the game market. The game
consists of shooting birds with a slingshot in pigs or structures
in order to destroy the structure and kill the pigs. The fewer
birds used and the more objects destroyed, the highest is the
score of the player.

In 2012, the Australia National University (ANU) began
to develop a framework that allows for the development of
Angry Birds playing agents and by the end of the same year
ANU held the first competition of autonomous Angry Birds
playing agents.

The framework provided by the ANU uses the Chrome
browser’s version of Angry Birds with a plug-in to perform
commands, whereby the client and server softwares were de-
veloped in Java. This framework allows for the change in
both server and clients codes and thus the development of
new agents for the competition.

As informed in the documentation provided by the ANU,
the framework works in a client-server mode in a way that the
server interacts with the Chrome’s plug-in to send commands
to perform the shooting of the birds and tapping and also to
take the screenshot of the game, so that a vision system can
recognize the objects in the scenario.

The client software is responsible to choose the coordinates
for the shooting of birds and the time until the tapping. The

agent provided as an example, called NaiveAgent aims di-
rectly at the pigs, with no regards to the objects around it.

The challenge is to develop a client side of the applica-
tion capable of (at least) outperforming the NaiveAgent.
In other words, the goal is to develop an autonomous agent
that is able to play without human intervention and that would
consider the environment in which it is immersed at a given
moment and to choose the best object to use as a target.

This paper presents one of the agents developed at Cen-
tro Universitario da FEI for the 2012 competition, which had
the main focus in choosing the best target to use. To develop
the FEI2 agent, three concepts were combined. First, qualita-
tive spatial representation was used, since the position of the
objects and the relation between them is important in the An-
gry Birds game. The second concept is that of Utility Func-
tion, which allows the agent to represent preferences for the
options that are given to it. Lastly, decision making under
uncertainty was also used in the development of the agent,
because it was perceived that there was some imprecision in
the launching of the birds and that imprecision would make
the bird hit a completely different target — or no target at all —
in some situations.

The combination of these three concepts is discussed along
the following sections and the equations used to develop the
agent are also presented and discussed.

This paper is organized as follows: the next section
presents the foundation of qualitative spatial representation,
followed in Section 3 by a description of Utility Function.
Section 4 presents a formalization for an agent to make deci-
sion under uncertainty. Next, in Section 5, the development
of the FEI2 agent and how the concepts were combined is
presented and in Section 6 the performance of the agent is
evaluated. Finally, Section 7 concludes this work.

2 Qualitative Spatial Representation

The objective of a Qualitative Spatial Reasoning (QSR) sys-
tem is to symbolically represent objects in a space and pro-
vide a system of inference for those objects [Santos, 20101,
with the main challenge being to provide the calculi that al-
lows the representation and reasoning without using quanti-
tative methods [Cohn and Renz, 2008].

One of the assumptions of the qualitative representation
is the relationship between objects. A relation R in the do-

main W can be formally represented by the set of tuples
(w1, ws, ..., wy) of the same arity k, with Vw; € W.

Considering a set of n relations R = {R;,Ra,..., R}
existing in a domain W, it is possible to obtain an algebra of
relations using algebraic operations.

In order to perform QSR, there is the need to represent ob-
jects in space. Although there is a large number of repre-
sentation methods [Ligozat, 2011], this paper focus only on
direction and orientation representation, because those were
the ones used in the development of the agent. Future work
shall consider other modes of spatial representation.

Fundamentally, a direction relation can be defined by three
components: an object, a reference and a reference frame.
Some representations use cardinal directions (North, South,
East and West) while others — such as this work, for example
— use a special case of direction calculus, called Orientation
Calculi, which assumes that the objects in the space have an
instrinsic front.

In the Angry Birds domain for example, we use the rela-
tion between objects that can be used as targets, such as pigs,
woods and stones and by doing so we have relations such as
above (pig, wood) to know if the pig is above the wood
and 1eftOf (stone, pig) that returns if the stone is in
the left of the pig, for example.

3 Utility Function

An utility function is used to map states in the environment to
real numbers in a way that it can represent the preferences of
an agent regarding the states. The notation used to describe
this preference relation is [Russell and Norvig, 2004]:

e A < B: Bis prefered than A;
e A ~ B: the agent is indifferent between A and B;

e A =< B: B is prefered than A or is indifferent among
them.

In order to constrain the utility function, so that the agent
cannot behave irrationally, six axioms can be used to provide
the proof, as demonstrated by [Russell and Norvig, 2004].
This proof will not be made here as it is out of the scope of
this article.

From these axioms, [Russell and Norvig, 2004] define Util-
ity as the function that maps a set of states S to a real value
U, so that an agent can prefer a state to another with higher
utility.

Finally, the principle of Maximum Expected Utility (MEU)
is defined as:

U ([p1, S1;p2, 825 5pny Sal) = 0 x U(Ss) (1)
i=1

for all states S; € S that has respective probabilities p; of
occurring.

Once we know how to calculate the utility of a state, it
is possible to use this information to decide which action to
take. The next section presents how to make those decisions
when there is uncertainty involved.

4 Decision Making Under Uncertainty

Hardly ever an agent in the real world has access to all infor-
mation available in the environment, being it by the inability
to read it with its sensors or by the complexity of the world it-
self, but even in situations of uncertainty, an intelligent agent
must decide what action should it make.

A simple method to formalize a decision problem is using
the tuple (D, N, O), a function f : D x N' — O and the
preference relation < [Bertsekas, 2005], in which:

e D: is the set of possible decisions that the agent can take
at any given time step;

e MN: is the set of “states of nature” that gives the indexes
of uncertainty in the problem;

e (: is the set of all possible outcomes given a decision
d € D and a state n € N chosen by the agent;

e f:D x N — O: is the function that maps the possible
outcome o € O given the decision d € D and the state
n € N,sothatVd € D,Vn e N, Jo € O| f(d,n) — o

e =: is the preference relation between possible outcomes
o € O, so that 0; < 09 indicates that o, is at least as
preferable for the agent as oy

It is possible to use a utility function U (O) to map the pref-
erences of the set O to a real number (U : O — R), so that
we can say that given two options 01,02 € O, if 01 <X 09,
then the utility U (01) < U(o02).

Considering that O = f(di,n),¥n € N and Oy =
f(d2,m),¥n € N we can also say that if U(O1) < U(Os),
then d; < ds and, using the maximum expected utility prin-
ciple, in a situation in which the agent must choose between
the decisions d; and ds, it should choose d», since it is at least
as preferable as d; for every possible outcome and maximizes
the expected utility [Russell and Norvig, 2004].

Another form to write this relation is by using the equa-
tions [Bertsekas, 2005]:

U(dl) < U(d2)7vn € N and
J @)

= o, 1T {f(dl,n) f(d2,n),¥n € N;

Given all possible decisions d € D that the agent can
choose, the one that it must select in order to have the best
outcome is called the dominant decision d* € D, so that
d =% d*,Vd € D. Nevertheless, it is possible that for a given
problem there is no dominant solution, but there are partially
dominant solutions, which is a set of solutions that dominate
one another in one dimension but not in another.

In this case, a partially dominant solution set D,,, formed
only by the solutions d,,, that partially dominate any other
is considered. This set is formed so that Vd,, € D,, there
isno d € D that has U(d,,,n) < U(d,n), Vn € N and
U(dy,n) <U(d,n) forany n € N.

For problems in which there is uncertainty in the outcome,
we assume that the uncertainty n follows a given probability
distribution P(-|d) defined under /. From this probability,
we can write the probability P;(0) of occurring the outcome
o € O for each decision d € D using the function f(d, -) and
the relation

Py(o) = P({n|f(d,n) = o}|d), Vo € O 3)

As explained by [Bertsekas, 20051, from this equation it
is possible to use the principle of expected utility so that the
agent can choose between two decisions d;, ds € D that have
the same outcome o € O. If the agent knows the probabil-
ities Py, (0) and Py, (0), the decision can be made using the
relation d; < dy if and only if Py, = Py,.

The next section presents how the principles described
above were applied on the developement of our Angry Birds
agent.

5 Developing the FEI2 Agent

To develop the FEI2 agent, we proposed a combination of
utility function and qualitative spatial representation for ob-
jects from the Angry Birds levels that the vision system can
recognize. Along with this combination, decision making un-
der uncertainty was used when dealing with the process of
choosing the lauching coordinates of birds.

Since at every time the agent has to make a decision, a
screenshot is taken, the FEI2 agent uses the position and rela-
tion of elements (mainly pigs, stones, ice and wood) to calcu-
late utilities and find the element with the highest utility and
probability to be used as target.

In the following subsections, we describe in details the use
of each of the methods described above.

5.1 Utility function with Qualitative Spatial
Reasoning

To evaluate the objects that could be used as targets in the cur-
rent scenario, the agent calculates an utility value for some of
the objects found in the image segmentation process. We de-
fine the following three attributes to compose the utility func-
tion:

1. Pigs’ utility (equation 4);

2. Destructible Objects: wood (equation 5) and ice (equa-
tion 6);

3. Indestructible Objects: rocks (equation 7). It is impor-
tant to observe that, although some rocks can be de-
stroyed, we consider only red birds in our agent and this
kind of birds needs more than one hit to break a rock.
Thus, we considered every rock as an indestructible ob-
ject.

Although only four objects were used as possible targets,
the vision system can recognize some others, such as inde-
structible wood, floor and birds. Those objects were not con-
sidered as possible targets because birds are the shooting ob-
jects, the floor in most cases can only deviate the trajectory
of the bird and as such, can not help it to achieve its goal.
Finally, the indestructible wood is usually recognized in the
slingshot used for the birds and some constructions of the sce-
nario, and as the floor, it can only deviate the bird’s trajectory.

To implement the methods that describe the relation be-
tween two objects recognized in the scenario, we used the
information provided by the BoundingBox method already
provided for the objects. The methods developed to described
the relations between an object of reference (ref) and a pos-
sible target (obj) are:

e above (obj, ref): obj completely covers the su-

perior side of ref;

e below (obj, ref):
perior side of ob J;

e left (obj,
side of ref;

ref completely covers the su-
ref): obj completely covers the left

e right (obj, ref):

side of ob J;

ref completely covers the left

e isAbove (obj, ref): obj is at some point above
ref, but not necessarily directly above ref;

e isBelow (obj, ref): obj is somewhere below
ref, but not necessarily right below;

e isLeft (obj, ref):objisattheleftof ref,inde-
pendently of the vertical relations;

e isRight (obj, ref):objis attherightof ref, in-
dependently of the vertical relations;

e diagAboveleft (obj, ref):
isAbove (obj, ref) A islLeft (obj, ref).
obj is at the same time above of ref and at the left of
1t;

e diagAboveRight (obj, ref):
isAbove (obj, ref) A isRight (obj, ref).
Analogously, ob 7 is at the right and above of ref;

e diagBelowLeft (obj, ref):
isBelow (obj, ref) A isLeft (obj, ref).
ob 7 is at the left of ref and at the same time below it;

e diagBelowRight (obj, ref):
isBelow (obj, ref) A isRight (obj,
obj is below of ref and at the left of it;

As described in the beginning of this section, each possible
target has its own function to calculate the utility. For the
pigs, it is considered its relation with every other destructible
and indestructible object in the scenario and also with every
other pig. In this case, for every object that tries to avoid the
collision of the bird with the pig, a value is discounted based
on the type of object and its relation to the pig. The function
used to calculate the pig’s utility is:

Upig) = >

d€&Destructables
+ right(d, pig) — 2 x diagAboveLe ft(d, pig)
+ 2 X diagBelowLeft(d, pig)
+ diagBelowRight(d, pig)

LD

w€Undestructables

ref).

—2 x above(d, pig) — left(d, pig)

—2 X above(i, pig)

— 2 x below(i, pig) + right(i, pig)

— 2 X diagAboveLeft(i, pig)

+ 2 x diagBelowLeft(i, pig)

+ diagBelowRight(i, pig)

+ Z diagAbove Right(pig, p))

pEPigs

As it is possible to notice in equation 4, when considering
destructible objects we subtract a value when the object hin-
ders the possibility of hitting the pig and add values when the

object does not interfere with the trajectory of the bird. For in-
destructible objects, the process follows the same principles,
but with slightly different weights.

It is important to notice that the weights for every relation
was obtained by empirical evaluation. Considering that we
receive +1.0 when the spatial relation is true and 0.0 when
false, the initial proposal used those values directly, but as
we could perceive by the choice of target, some relations and
properties influenced more in the trajectory of the bird and
completing the level than others. Thus, the main change was
doubling the weights that provided a better overall solution
during development.

Regarding the destructible objects, the agent considers two
types of objects: wood and ice. Although both can be bro-
ken when the bird hits it, they may deviate the trajectory of
the bird depending on the angle that the bird hits it. Thus,
when developing the utility function of destructible objects,
we considered when the collision of the bird with the ob-
ject can help to indirectly kill the pigs (diagBelowLeft
and diagBelowRight), when the change of trajectory pro-
vided by the collision may help hitting another bird (right
and diagAboveRight) and when the collision will not
help the bird (above, left and diagAboveLeft).

The final equation, used for objects that can be destroyed
(d), compares the position of those objects with the centroid
calculated from the current position of every pig left in the
scenario (cp) and was defined as:

U(d) = —2 x above(d, cp) — left(d, cp) + right(d, cp)
— 2 x diagAboveLe ft(d, cp) + diagAbove Right(d, cp)
+ diagBelowLeft(d, cp) + diagBelowRight(d, cp) (5)

Equation 5 above describes the utility used for wood. As
with the pig’s utility, the weights of this equation was ob-
tained empirically. Since destructible objects when destroyed
may slow down the bird — and by doing so when the bird hits
the pig, it may not kill the pig, but only harm it — when objects
are in the left or above the centroid of the pigs, they receive
a negative weight. In other cases, when the diversion caused
by the collision with the object may help the bird hit another
pig, the spatial relation has a positive weight.

Initially, we expected to use a single equation for every de-
structible object available in the game, but since ice is easier
to be destroyed than wood and in various scenarios, ice is pre-
sented as a key object to be destroyed, in order to finish the
level using as fewer birds as possible, the equation used for
this object was different than the equation used for wood. The
equation used to calculate the utility of an ice ¢ in relation to
the centroid of all pigs cp and other ice blocks 2 is:

U(i) =1 — 2 x above(i, cp) — left(i, cp) + right(i, cp)
— 2 X diagAboveLe ft(i, cp) + diag AboveRight (i, cp)
+ diagBelowLe ft(i, cp) + diagBelowRight(i, cp)
+ 37 (below(i2,i) Aleft(i2,i)) +isLeft(i2,i) (6)

i2€1ce

As with the previous utility functions, the weights for the
equation 6 were obtained empirically. The main difference
between equations 5 and 6 is the bias added in the beginning
of the equation, so that an ice may have a greater utility than

other objects, and the relations between every ice block is also
considered in this equation. This was considered during de-
velopment for the cases of a sequence of ice block, so that the
agent may choose as target the block in the lowest position,
that when broken may cause a chain of destruction of other
ice blocks.

The last type of object that the vision system can recognize
and that was used to calculate an utility function is the rock,
that has a different function since it is an indestructible object.

Analogously, the utility of every rock r in the scene is cal-
culated using its relation with regard to the centroid of the
pigs cp. Nevertheless, since rock is an indestructible object, it
was only considered to deviate the trajectory (above, left,
diagAboveLeft and diagBelowRight), it can be used
to change the trajectory (right and diagAboveRight)
or it can be moved (diagAboveLeft). The final equation
for the utility of a rock r is calculated using:

U(r) = —2 x above(r,cp) — 2 X left(r,cp) + right(r,cp) (7)
+ diagAboveLe ft(r,cp) — 2 x diagAboveRight(r, cp)

— 2 x diagBelowLe ft(r, cp) — 2 X diagBelowRight(r, cp)

As with the previous equations, the weights of equation 7
have been empirically evaluated. It is possible to notice a
similarity between equations 7 and 5, being the difference
the weights of the relations 1eft and diagBelowLeft —
since the rock can not be destroyed, but only moved — and the
diagAboveRight and diagBelowRight, because in a
destructible object, it can be destroyed and maybe it will slow
down the bird, but in the case of the rock, it will stop the bird
or deviate it from the original trajectory.

Using these equations, the agent can calculate the utility
of each object that it can use as a target, but there is still the
uncertainty regarding the chance of the bird hitting the target.
The next subsection explains how the probability was used
when making a decision to where to shoot.

5.2 Decision Making with Probability

The vision system provides the agent with the position of
the objects regarding the information obtained from the last
screenshot taken by the framework. There is no uncertainty
in the position of the objects and, as noted in the documenta-
tion, the release point chosen for a given target is calculated
based on the learning of a series of data already obtained, pro-
vided and used by the framework, which is also without any
uncertainty.

However, as noted when developing the agent in a config-
uration that is different from the one used in the competition,
there is a chance of missing the selected target when launch-
ing the bird. In some shoots the bird was able to hit precisely
the selected coordinate, but in other cases, the bird had a com-
pletely different trajectory and hit another object. Thus, the
concepts of probability and uncertainty were used to deter-
mined the chance of a bird to hit a given target.

To calculate these probabilities, a class was developed in
which, given the x and y coordinates of the launching point
of the bird and the target, it calculates possible trajectories.
Once the agent has a set of calculated trajectories, it chooses
the launch point that hits the highest quantity of targets in

a predefined range (so that only some of the highest utility
objects are considered and not all of possible targets).

Now that the concepts used to develop the decision making
for the Angry Birds agent has been presented, the next section
presents the implementation of the concepts, along the envi-
ronment that was used.

5.3 Implementation

Our agent was implemented using version 1.2s of the frame-
work provided by the Australia National University (ANU)
for the 2012 Angry Birds competition. This version of the
framework already uses the client-server method, but still
needs Mathwork’s Matlab to segment the screenshot from the
game. NaiveAgentClient provides an example of inter-
action with the server with level selection, restart, which also
selects the coordinates for shooting the bird when given the
coordinate of a target.

The focus of the development of the agent was in the de-
cision making and as such, most of the interaction with the
server was derived from the NaiveAgentClient that used
the NaiveSolver class to choose the object to use as tar-
get. Initially, the NaiveAgentClient class was dupli-
cated and named as FeiAgentClient!, but instead of us-
ing the NaiveSolver class to choose the target, it instan-
tiated the FeiSolver class and used it to select the next
target using Utility Function as described in Section 3.

Along with the FeiSolver class, some other classes and
methods were implemented so that it facilitated the usage of
the concepts described in the previous sections. The three
developed classes were:

e FeiUtility: the class that provides the methods to
calculate the utility for each object considered as possi-
ble target. In the case of this implementation, only the
pigs, destructible objects (wood and ice) and indestruc-
tible objects (rock) were considered.

e Positions: class that implements the methods that
returns the possible relations between an object and a
reference, as described in Section 5.1. Twelve methods
were implemented, but not all of them were directly used
in the utility function.

e Trajectory: aclass that calculates possible trajecto-
ries for the birds, given a target’s coordinates. It consid-
ers that the trajectory is always a parabola.

The FeiUtility. java class is responsible for the im-
plementation of the utility functions and as such provides
the methods destructiblesU, indestructiblel,
pigsU which are responsible to calculate the utility of the
destructible objects (wood and ice) indestructible objects
(rock) and the pigs that exists in the level, respectively. Those
methods calculate the utility for each of its respective objects
and then returns a linked list that contains every value with
its object. Those linked lists are them used by the utility
method implemented in the same class. This method takes
every list and combines them into a single list.

!The class received some minor changes during the development,
but it kept most of its original code

Finally, the method getUtilities, also implemented
in the same class, receives lists of objects divided by types
and uses the other methods to calculate the utility. Once it
has the list of utilities of every object, it returns a liked list
ordinated by the utility value of every possible target.

The possible trajectory of the birds were devel-
opete in the Trajectory.java class and the method
computeFlight, which receives a target object calculates
possible launch coordinates and returns only the ones that can
hit the desired target.

The Positions. java class is the responsible to imple-
ment the relations presented in Section 5.1. This class is used
mostly by FeiUtility to calculate the utility of each ob-
ject.

The FeiSolver class uses these three classes to choose
a target from the list of objects (pigs, wood, ice or rock).
It receives the objects from the vision system and then cal-
culates the utility for all of them. Next, it traces the pos-
sible trajectories only for the five objects with the highest
utility and chooses as target the one that it has found the
largest amount of launch points that hits the object. After
it chooses the target, the agent returns the selected object to
the FeiAgentClient, so that this class would perform the
shooting process.

The complete code of the agent
https://bitbucket.org/anjoletto/ab2012-fei2.

Now that we presented how the FEI2 agent was imple-
mented, it is possible to verify the performance of the agent
during the game.

is available at

6 Performance in the game

There were two performance evaluation for the FEI2 agent.
The first one was made during the development of the agent
and the second one was presented by the ANU after the com-
petition ended.

6.1 Performance During Development

During development, a great variation in the trajectory of the
bird was observed. This resulted in the development of the
Trajectory. java class to obtain the probability of hit-
ting a given target.

Since we could not compare the results of the other agents
in the competition, the evaluation of the agent was based
mostly in the number of stars that the agent got and how many
birds it needed to solve the level. The final evaluation was
performed in the first fifteen levels of the Poached Eggs lev-
els.

In the first and second levels, the FEI2 agent received one
or two stars, depending on the error in the trajectory. In most
of the next levels the agent could get the three available stars
using only one or two birds to solve the problem. In those
levels it was noticed that the second bird onwards was used
mostly when there were too many pigs in the level or a great
number of objects around the pigs.

It was also noticed that in some ocasions the agent did
not complete the level or received only one star. Those usu-
ally happened when there were too many objects around the

Level | ABC-AI-UNICAL | ABC-IS-UNICAL | CU Dan FEI2 | Naive Agent | RedBacks | Zonino | 3 stars
2 52420 34600 52590 | 42960 | 60880 43440 44080 52560 | 60000
3 33460 41070 42880 | 32880 | 21070 41350 23480 40800 | 41000
5 36280 62780 52740 | 55560 | 66050 54350 67630 63230 | 64000
6 17870 17500 19270 | 23630 | 32550 24510 24530 17900 | 35000
8 47400 40440 47780 | 47180 | 34190 48270 47920 46820 | 50000

Table 1: Benchmark performed by the ANU with the agents of the 2012 competition (available in the AIBirds.org website).

The table presents only the levels that the FEI2 agent has finished during the benchmarking.

pigs and the birds could not harm them or even the struc-
ture around them or when there was an error in the trajectory,
which made the bird miss the target.

When comparing with the NaiveAgent, FEI2 obtained a
good performance. But in the environment of the competi-
tion, the performance was completetly diferent.

6.2 ANU Benchmark

A benchmark test with all the agents that participated in the
2012 competition was performed by the ANU after the event
and the results are presented in the AIBirds website. In the
benchmark, FEI2 completed only five of the levels used in the
competition (these are presented in table 1), the other levels
it did not complete because it used all the available birds and
could not finish the level.

As informed in the AIBirds website, in the benchmark test
the agent had a limit of thirty minutes to solve each of the
twenty one levels. When the agent was not able to do so, the
agent was forced to proceed to the next level.

Although the agent could not complete every level, from
the five levels it completed it had the highest score for two
levels (level 2 and 6) and the third highest in the fifth level.
Nevertheless, on the other two levels that it completed, our
agent had the lowest score from all the agents.

However, improvements in the agent are necessary so that
it can deal with other levels that it could not complete and the
possible problems in the trajectory that were not considered
in the screen resolution used during development.

We believe that the main cause of the difference in per-
formance between development and benchmark is the differ-
ence in the game’s configuration, mainly the screen resolu-
tion. Since the documentation of the framework does not
mention the possibility of imprecision in trajectories, but it
was observed during the development.

7 Conclusion

This paper presented the main concept behind the develop-
ment of the FEI2 agent. Although its interaction with the
server was mostly based from the NaiveAgentClient ex-
ample agent provided with the framework, the target choos-
ing method was developed using different concepts such as
utility function, decision making under uncertainty and qual-
itative spatial representation.

In the benchmark test made by the ANU, the agent had a
good performance in the five levels that it completed, having
the highest scores in two of them. Nevertheless, this is not a
good performance overall, since the agent could not complete
sixteen out of the twenty one levels.

Future works are initially focused in setting a testing envi-
ronment as close as possible to the one that will be found in
the competition.

With the environment set, changes in the weights of the
spatial relations of the utility functions might be performed
or even the function itself may be redesigned to accommodate
unexpected events or combination of objects.

Another possible change in the utility function is the usage
of other representations along the positions, such as sizes and
directions, so that it is possible to have a better description of
the problem that needs to be solved and, as a result, a better
utility function.

For the trajectory probability, the number of objects that
the agent calculates the trajectories might change. So that
instead of taking a fixed number of objects, it takes a fraction
of the objects in the scenario to perform the calculation.

Acknowledgments

Leonardo Anjoletto Ferreira acknowledges support from
CAPES. Paulo E. Santos acknowledges support from
FAPESP grant 2012/04089-3 and CNPq, grant PQ2 -
303331/2011-9.

References

[Bertsekas, 2005] D. P. Bertsekas. Dynamic programming
and Optimal Control, volume 1. Prentice-Hall, Inc. Upper
Saddle River, MT, USA, 3 edition, 2005.

[Cohn and Renz, 2008] A. G. Cohn and J. Renz. Qualitative
spatial representation and reasoning. Foundations of Arti-
ficial Intelligence, 3:551-596, 2008.

[Ligozat, 2011] G. Ligozat. Qualitative Spatial and Tempo-
ral Reasoning. Wiley-ISTE, 2011.

[Russell and Norvig, 2004] S. J. Russell and P. Norvig. Ar-
tificial Intelligence. Pearson Education India, NJ, USA, 2
edition, 2004.

[Santos, 2010] P. E. Santos. Spatial reasoning and percep-
tion: a logic-based approach. Tutoriais do XVIII Con-
gresso Brasileiro de Automadtica, 2010.

