
Object Representation in Angry Birds Game

Shu Lin, Qinjian Zhang, Haifeng Zhang
Peking University

China
{fzlinshu, zqj, pkuzhf}@pku.edu.cn

Abstract
In the Angry Birds game, there are dynamic object-
s and static objects. Dynamic objects are usually
convex polygons, while static objects can be con-
cave. To represent dynamic objects, it is more accu-
rate to use bounding convex polygons (BCPs) than
Axis-aligned minimum bounding boxes (AABBs).
BCPs can be roughly detected from AABBs, and
some of them can be fitted into rectangles. We take
another approach to detect concave objects, such
as mountains. We apply edge detection and Hough
Transform to build polygons to represent mountain-
s. In this paper, we mainly introduce our work on
detecting BCPs and representing concave objects.

1 Introduction
Angry Birds AI Challenge is an AI competition, aiming to
build AI agents that can play the Angry Birds game. In this
game, birds are shot to attack pigs that are protected by block-
s of ice, woods and stones. Since AI agents only get screen-
shots as input information, the first topic for the problem is
computer vision. It is basic and important to lay a foundation
for the follow-up works.

The objects in the Angry Birds game can be divided in-
to two categories. Birds, pigs, woods, stones, ice and TNTs
are dynamic objects, while slingshot, ground and mountains
are static. Dynamic objects can collide with each other and
behave according to the law of physics. On the contrary, stat-
ic objects cannot move or collide with other static objects.
When a dynamic object collide with a static object, they fol-
low the law of physics in the way that the static object has in-
finite mass. In addition to mobility, there is another difference
between the two categories – dynamic objects are all convex
polygons, while static ones can be concave. This difference
leads to different methods of object detection.

Angry Birds Game Playing Software (Version 1.1) [Ge et
al., 2013] has realized a vision model to detect and represen-
t dynamic and static objects. It use Axis-aligned minimum
bounding box (called AABB) to represent dynamic object-
s. AABB is a well-known concept in the area of computer
vision, but it is not accurate enough because the shapes and
angles of some objects, such as woods, stones and ice, can be
various. Another weakness of this vision model is that it does

not detect static objects other than slingshot. It is necessary
to detect and represent other static objects since that ground
appears in all levels and mountains often play important roles
in the levels they appear.

To improve the performance of representation of dynamic
objects, we detect bounding convex polygons (BCPs) from
AABBs of objects. BCP can represent shape and angle of an
object accurately in theory, while it often misses some bits
of the object in practice. To avoid that partly, we apply an
algorithm to restore rectangles that are incomplete.

For static object detection, the main task is to detect moun-
tains. As mentioned above, mountains can be concave so that
we cannot use the same method to detect them as dynam-
ic objects. We apply an algorithm that contains the follow-
ing steps. Firstly, we capture a rough shape of mountains
through color detection, and then find out the boundary. Af-
ter that, we apply a Hough Transform to get straight lines that
fit the boundary. Finally we segment the straight lines and
form polygons to represent mountains.

In the following, we review the previous work, and intro-
duce dynamic object detection and static object detection re-
spectively.

2 Previous Work
Our work is based on the project Angry Birds Game Playing
Software (Version 1.1). However, since the vision as well as
some other related models is quite simple and inaccurate, we
focus a lot on how to improve the performance of these basic
models.

The first part we need to improve is how to capturing dy-
namic objects (including woods, stones, ice and so on) in a
more efficient way.

From reading the code of Angry Birds Game Playing Soft-
ware, we figure out that the original method for finding these
objects is:

1. Find an unused point which is of the same color as the
main part of the corresponding object. For instance,
woods are mainly of color 481, while stones are color
365 and ice is 311.

2. Use FLOOD-FILL algorithm to find out all points which
near the start point and may be parts of the object, by
checking their colors.

3. Return the AABB of the points set as the whole object.
It may be discarded if it is too small.

Using AABB to represent an object is easy for implemen-
tation, however, it makes the deeper researches become much
more difficult. That is because this representation will lose
lots of information about the actual object, such as the shape
(Figure 1), the position (Figure 2), and even the relation be-
tween two or more connected objects (Figure 3).

Figure 1: Lose shape information of the top three round s-
tones at Level 8, however, the optimal strategy is trying to
make them rolling down

Figure 2: The left most and the right most woods at Level 5
look exactly the same, however, far from the truth

3 Dynamic Object Detection
3.1 Applying Bounding Convex Polygon
Obviously, the shapes of dynamic objects - whatever rectan-
gles or circles or triangles - all can be estimated by convex
polygons.

In that case, we use the minimum Bounding Convex Poly-
gon (called BCP) of the points set instead of the bounding
box of it to represent the object.

Once the points set of an object is captured, we get its
bounding convex polygon using the algorithm below:

Figure 3: These woods and ices at Level 19 become totally a
mess under this representation

1. Let XL be the x-coordinate value of the leftmost point,
andXR be the x-coordinate value of the rightmost point.

2. For each integer X between XL and XR, find the
points with the smallest or the largest y-coordinate value.
While the points set is generated by FLOOD-FILL algo-
rithm, it is certain that at least one point can be found on
each X .

3. Arrange the points with largest y-coordinate for each X
from left to right to form the ”lower bound” of the object,
and arrange those ones with smallest y-coordinate for
each X from right to left to form the ”upper bound”.

4. Scan all points on the bounds in order, use Cross Product
[Cormen et al., 2001] to check whether they should be
on the final bound, and discard the ones which are not.
Then we get the BCP of this object.

Figure 4 may help to understand the whole process.

Figure 4: Calculating bounding convex polygon

After applying the BCP for object representation, the prob-
lems caused by information lost can be effectively solved
(Figure 5).

Figure 5: Comparison of bounding boxes (dotted lines) and
bounding convex polygons (solid lines)

3.2 Restoring Rectangles
When the BCP representation is applied in our project, it
seems that a new problem has been reared up. Since we only
use color to check whether a point is belong to an object, the
object often miss one or more bits from the corners because
it is not always of pure color.

While most of the objects are in rectangles, we are trying
to fit the objects we got into rectangles, too. The basic idea
is to find a minimum rectangle which is able to contain the
corresponding object.

In order to avoid incorrectly converting a circle to a rectan-
gle, we set a constant threshold K, then if the ratio of the area
of the BCP to the area of the minimum rectangle is less than
K, the original shape of the object is possibly not a rectangle,
and vice versa.

The threshold is set to be

K =
π + 4

8
which is the average result of a circle (radiocircle = π/4)
and a rectangle (radiorectangle = 1).

When finding the minimum rectangle containing a convex
polygon, we can assume that one side of the rectangle co-
incides with one side of the convex polygon. Therefore, we
enumerate each side of the convex polygon as the bottom side
of the rectangle, determine the left side and the right side by
using Dot Product, and figure out the height of the rectangle
by calculating the distance between each point and the bot-
tom side, using Cross Product [Cormen et al., 2001]. (Figure
6)

Figure 6: Finding the minimum rectangle

4 Static Object Detection
4.1 Ground Detection
After went through level 1 to 21, we find a good news that
the ground in each level is exactly at the same place, which
means we can simply use a fixed rectangle to represent it.

4.2 Mountain Detection
Representing the ground is quite easy; however, representing
the mountains on the ground is not an easy task. That is be-
cause mountains are concave polygons. Thanks to many use-
ful tools (such as edge detection and Hough Transform) from
the computer vision literature, we can solve this problem in
an efficient way.

To detect mountains, we take the following steps:

1. Find all points on the mountain boundary by edge detec-
tion;

2. Find straight lines to fit the mountain boundary by
Hough Transform;

3. Use segments to represent the mountain boundary;

4. Use polygons to represent the mountain boundary.

For example, we detect mountains from a screenshot as
Figure 7.

Figure 7: Original image

Boundary Extraction
We find that mountains have their own color which is dif-
ferent from other objects. So it is easy to find all points on
the mountain as foreground points, and other points as back-
ground points. In Figure 8, the grey points are background
points and the white points are foreground ones. We regard
a point as a boundary point if and only if it is a foreground
point and it is adjacent to a background point. In this way, we
can get a mountain boundary represented by a set of points
(Figure 9).

Figure 8: Rough shape of mountain

Figure 9: Boundary point extraction

Boundary Line Extraction
We apply Hough Transform to extract boundary lines from
the boundary points extracted before.

Hough Transform is a famous feature extraction technique
used in image analysis, computer vision, and digital image
processing [Wikipedia, 2013].

The main idea of Hough Transform is to consider the char-
acteristics of the straight line in terms of its parameters ac-
cording to slope-intercept model, instead of image points. For
computational reasons, we use polar coordinate model (Fig-
ure 10) instead of slope-intercept model.

Figure 10: Polar coordinate model in Hough Transfer

The parameter r is the distance from origin to the line,
while θ is the angle of the vector from the origin to foot point.
With this parameterization, the line can be described as

y =

(
−cos θ

sin θ

)
· x+

(r

sin θ

)
which can be rearranged to

r = x cos θ + y sin θ

Therefore it is possible to represent each line with a pair (r, θ)
which is unique if θ ∈ [0, π) and r ∈ R∗.

After Hough Transform, we get the boundary lines in Fig-
ure 11.

Boundary Segment Extraction
After boundary line extraction, we get some lines to fit the
boundary points. However, there are still many points on the
lines that are not on the boundary. So we need to use segmen-
t extraction to get segment lines to form the boundary. We
use the GET-SEGMENTS algorithm to complete this task. We
consider two boundary points are in different segment lines if

Figure 11: Boundary line extraction

between them there are more than five continuous points that
are not boundary points. Finally, we get the result as shown
in Figure 12.

Figure 12: Boundary segment extraction

GET-SEGMENTS(LINES, BOUNDARY POINTS)
1 segments← {}
2 for line ∈ lines
3 do cntcont ← 0
4 cntmiss ← 0
5 for p← each point on line
6 do hit← false
7 for p′ ← each point adjacent to p
8 do if p′ ∈ boundary points
9 do hit← true

10 break
11 if hit
12 do if cntcont = 0
13 do seg ← new segment
14 Set p as the begin of seg
15 else Set p as the end of seg
16 cntcont ← cntcont + 1
17 cntmiss ← 0
18 else cntmiss ← cntmiss + 1
19 if cntmiss ≥ 5 and cntcont ≥ 5
20 do Insert seg into segments
21 cntcont ← 0
22 cntmiss ← 0
23 return segments

In GET-SEGMENT algorithm, we scan each line from one
end to the other. For each point on the line, we check whether

Level 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Avg.

TAABB 72 71 67 70 68 78 69 77 72 71 77 79 71 67 71 75 72 66 70 68 70 71
TBCP 73 87 90 88 83 82 91 77 88 91 91 94 83 87 93 96 92 95 82 91 111 89

Acc% 100 100 86 100 97 100 50 100 79 94 95 63 81 100 94 100 80 80 71 93 80 88

Table 1: Evaluation result of dynamic object detection on the initial state of each level

it is on the boundary from Line 7 to Line 10. If it is (we call
it “hit”), then we increase the continuous count (cntcont) by
one and clear the miss count (cntmiss); Otherwise, increase
the miss count by one. Once the miss count is greater than
five, we believe that the current segment is completed. In
order to avoid the negative effects of image noise, only the
segments longer than five are considered (see Line 19).

Boundary Polygon Description
The segments we got in the previous work are out-of-order.
In that case, we have to sort them in either clockwise or anti-
clockwise to form a polygon. We use the GET-POLYGONS
algorithm to achieve this goal.

GET-POLYGONS(SEGMENTS)
1 polygons← {}
2 for seg ← unused segment in segments
3 do polygon← new polygon
4 Add seg into polygon
5 for seg′ ← each segment in polygon
6 do for seg′′ ∈ segments
7 if seg′′ interacts seg′
8 do Add seg′′ into polygon
9 Delete seg′′ from segments

10 Add polygon into polygons
11 return polygons

After all works above are completed, we get the final image
in Figure 13.

Figure 13: Final image

5 Evaluation
We apply both dynamic object detection method and static
object detection method to the real game states, in order to
evaluate the actual effect of them. To eliminate the uncertain
factors, only the initial state of each level is considered.

5.1 Evaluation Result of Dynamic Object
Detection

We first compare the difference about the time cost between
the original method – axis-aligned minimum bounding box
(AABB), and our new method – bounding convex polygon
(BCP). The average time cost of calculating AABB is 71 mil-
lisecond, while the average time cost of calculating BCP is 89
millisecond. It turns out that our method is about 20 millisec-
ond slower than the original one on average for each time.
However, it is obviously that only before shooting a new bird
will dynamic object detection be used. In another word, since
there are only five birds in each level on average, our method
just need about 100 millisecond more to achieve its goal. The
extra time can be ignored.

We also evaluate how accurate our method will be dur-
ing dynamic object detection. We define the accuracy rate
of detecting dynamic objects on a certain state as: the ratio
of the number of correctly detected dynamic objects to the
total number of dynamic objects on this state. The average
accuracy rate is 88%. After analyzing the result carefully, we
summarize three main problems that will cause inaccuracy:
• Some objects are too small to recognized, even hard for

people.
• There is no clear-cut boundary between two objects, so

the program will regard them as the whole thing; this
problem often occurs when two pieces of ice touch each
other.
• The color of an object changes sharply, then the program

may incorrectly divide it into two or more parts; this sit-
uation often appears on stones.

Fortunately, all this problems will not cause severe con-
sequences. That is because objects which are too small can
hardly effect on game playing, and in most instances, objects
that are tightly touched are difficult to be separated, so they
can be regarded as a whole thing, and vice versa.

All evaluation results are shown in Table 11.

5.2 Evaluation Result of Static Object Detection
We also evaluate the performance of our static object detec-
tion method, and list the result in Table 2.

Our method for static object detection is a little bit com-
plex; so that the time cost is quite long – 324 millisecond on
average, around four times of which for dynamic object de-
tection. However, while its goal is to detect static object, this
process will run only once for each level. Thus it will not s-
low down the efficiency of the whole algorithm substantially.

This method provides a quite accurate way of static object
detecting. Only when there are too many mountains and too
many noises will it make mistakes.

1All time are measured in millisecond, the same below.

Level 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Avg.

Time 134 308 321 325 157 624 175 156 172 350 348 371 584 361 728 203 173 199 198 547 378 324
Acc% N/A 100 100 100 100 64 100 N/A N/A 100 100 100 50 100 17 17 N/A 100 100 100 100 85

Table 2: Evaluation result of static object detection on the initial state of each level

6 Conclusion
In this paper, we focus on how to represent the objects more
accurately in the Angry Birds world. We divide the objects
into two categories – dynamic ones and static ones. We use
BCPs to represent convex dynamic objects, while applying
edge detection and Hough Transform to build concave poly-
gons to represent static objects.

This work improves the performance of object representa-
tion in the Angry Birds game. It would benefit the following
works of the AI agent, such as structure analysis and physical
simulation. Though our method may require up to one sec-
ond more time than the original method, the difference can be
tolerant since the time limit for each level is three minutes or
even more.

There are still many things we can improve. For example,
two objects may sometimes be detected as one object as well
as one object can be detected as two or more objects, which
will be harmful when calculating their weight.

References
[Cormen et al., 2001] Thomas H. Cormen, Charles E. Leis-

erson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, Cambridge, Massachusetts, 2001.

[Ge et al., 2013] XiaoYu Ge, Stephen Gould, and Jochen
Renz. Angry Birds Basic Game Playing Software. Re-
search School of Computer Science, The Australian Na-
tional University, March 2013.

[Wikipedia, 2013] Wikipedia. Hough transform.
http://en.wikipedia.org/wiki/Hough transform, July
2013.

