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Abstract

Consider the MaxScore algorithm selection prob-
lem: given some optimization problem instances, a
set of algorithms that solve them, and a time limit,
what is the optimal policy for selecting (algorithm,
instance) runs so as to maximize the sum of solu-
tion qualities for all problem instances?

We analyze the computational complexity of re-
strictions of MaxScore (NP-hard), and provide a
dynamic programming approximation algorithm.
This algorithm, as well as new greedy algorithms,
are evaluated empirically on data from agent runs
on Angry Birds problem instances. Results show a
significant improvement over a meta-agent greedy
scheme from related work. Hopefully this improve-
ment will carry over to an Angry Birds meta-agent
in the actual competition.'

1 Introduction

Algorithm selection is of significant interest to researchers in
Al, and other fields where more than one algorithm is avail-
able to solve problems under computational resource con-
straints [Rice, 1976; Huberman et al., 1997; Xu et al., 2008].
This paper examines a variant of algorithm selection ("MaxS-
core”) where one needs to solve a setr of optimization prob-
lems, with computational resource (assumed here to be time)
limitation being over the entire set.

Our motivation for the MaxScore setting is combining mul-
tiple programs that compete in the AI Angry Birds (Copyright
Rovio Entertainment) competition, on which we also base the
empirical results of this paper. In the Albirds competition,
each agent program (or human) is presented with N previ-
ously unseen game levels (problem instances). The agents
can select a level to play, where at each level the agent is pre-
sented with a screen-shot representing a physical simulation.
The agent may play any level as many times as desired, until
its overall allocated time (typically 10 or 30 minutes) expires.
Level score is the maximum achieved in all attempts, with to-
tal score being the sum of level scores (typically 4 or 8 levels
in past competitions).
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Of the numerous Al techniques used in Al birds agent pro-
grams, to-date none have achieved near-human performance;
each program has strengths and weaknesses in different ar-
eas of the game. Rather than attempting to create a better
Al for Angry Birds, our goal here is one of meta-reasoning:
use a portfolio of existing programs to play better, an idea
suggested originally by [Stephenson and Renz, 2017] with
promising initial results. The focus of this paper is on how
to do this combination optimally given the available informa-
tion, in a decision-theoretic sense, rather than on the aspect
of learning to fit the program to the problem instance.

Informally (see Section 2 for the formal definition) we are
given a set of problem instances (levels), to each of which we
can apply any of a set of given algorithms (agents). Each such
application uses up an unknown amount of time, and results
in a score for the level that can be observed after each algo-
rithm run terminates. Our meta-reasoning problem is to find
a policy for selecting which agent to apply to which level, at
any point in time, such that the sum of scores for all the levels
at timeout is maximized. Note that in order to make this pol-
icy optimization well defined, one must specify some prior
knowledge about scores and runtimes. In this paper we as-
sume that these are specified by random variables with known
distribution models.

2 Formal Problem Statement

A MaxScore problem is a 4-tuple (I, A, T, P) where I is a
set of problem instances to be optimized (game levels in An-
gry Birds), A is a set of algorithms (or agent programs), 7" is
a time limit, and P is a known distribution model over prob-
lems in 7, agents in A, that describes the (non-negative) score
S(a,l,1) achieved by agent a € A and the (positive valued)
runtime 7'(a, [, %) of a when applied to problem instance ! € I
during decision-making round ¢ of the problem-solving task
(or game play). Distribution P (also known as a performance
profile [Zilberstein and Russell, 1996]) can be defined in var-
ious ways, we consider cases where P consists of determin-
istic functions, or of distributions with independent variables,
or distribution with dependent variables (some of which are
unobservable).

A policy 7 is a mapping from process histories to actions.
The process is to select, at each round ¢ > 1, an agent pro-
gram a(%) to apply to a problem instance (level) (i), given the
past observations, according to 7. The results S(a(7),1(7),1)



and T'(a(4),1(2),7) are observed after the selection at round
1. Then 7 is incremented as we go to the next round. The
process stops when we reach the time limit, i.e. at the first &

such that:
Z T(a )>T

The score of the process is the sum of maximal achieved
scores for each problem instance, i.e.

S = ZmaXS ), 1(2),4)0(1,1(7))
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where 0(4, j) is the Kronecker delta. The problem is: find
a policy (mapping from process history, or alternately belief
state and round number, to (agent, problem instance) pairs)
that maximizes the expected value of S. This is the sequential
(adaptive) decision making version of the problem.

We also consider, for computational complexity analysis,
simpler linear settings of MaxScore, where the decision on
which agents to run on which problem instances (and in
which order) is decided only once, in advance. A policy in
this setting is simply a sequence of (agent, problem instance)
pairs. The linear setting is the same as the barch setting (also
called non-adaptive) commonly used in the research litera-
ture [Shperberg and Shimony, 20171, except that if the run-
times are not both known and deterministic, one must specify
the ordering so as to have a well-defined policy (some of the
agents may not get to run at all, due to runtimes uncertainty).

2.1 Performance Models

Assuming that the distribution model is Markov, the MaxS-
core problem is a POMDP with states defined by the current
maximum scores vector cR and the play time elapsed. As
the number of rounds is not known in advance, we define
the problem as an indefinite horizon POMDP with terminal
states being those where the sum of runtimes exceeds 7'. The
transition probabilities in this POMDP are trivially (and de-
terministically) defined given the score and runtime achieved
in the current round (which in turn are defined by distribution
P). The reward function is 0 except for transitions into ter-
minal states. In general, POMDPs are intractable (PSPACE
complete even if the belief space is finite). The actual com-
plexity of MaxScore depends on the setting (sequential vs.
linear/batch), on the performance profiles distribution model
P, and on the size of sets I and A.

A major issue is the performance profile (distribution
model) P. Typically, exactly what scores and runtimes to ex-
pect is unknown, except by running the programs on the prob-
lem instances, which is too late to make the needed decision.
However, we can run the programs on similar instances, col-
lect statistics and learn a prediction model given instance fea-
tures. Related work involved learning to predict the expected
score of an agent in an unseen level [Stephenson and Renz,
2017]. However, as argued below, such information is insuf-
ficient for optimal choice: one may need to predict the whole
score distribution (or equivalently, the expected improvement
over each possible current score).

If the agent programs are effectively memoryless, i.e. at-
tempt to solve the level from scratch each time they encounter

it, then the order of the observed scores and runtimes is irrel-
evant. This behavior is reasonable for Angry Birds, as the
game is effectively stochastic. Additionally (unlike search
problems in most search domains), even if an agent knows the
optimal play, it must still waste the time to execute it, which
takes essentially as much time as for an agent that needs to
plan the play. We thus consider the agent scores and runtimes
for a problem instance as i.i.d samples drawn from the distri-
butions Ps(a,l) and Pr(a,l), respectively. If these distribu-
tions are known, the MaxScore problem is in fact an MDP,
analyzed below.

3 Analysis: Known IID Case

We examine the computational complexity of some settings
of the MaxScore problem. We begin with the fully deter-
ministic case (scores and runtimes known in advance), and
proceed to the independent case.

3.1 Complexity: Restricted Versions

We show that the MaxScore problem is NP hard even in the
following extremely restricted cases:

1. Independent score distributions, deterministic runtimes,
and only a single problem instance (|| = 1).

2. Deterministic scores and runtimes, with |A|
with |I| unbounded).

We begin with the latter instance, as proving NP-hardness
here is immediate through a straightforward mapping from
the Knapsack problem. Simply map Knapsack item values to
scores, item weights to runtimes, and the weight limit to 7.
Note that as the scores and runtimes are deterministic, in this
case there is no difference between a linear setting, a batch
setting, and a sequential setting of the problem.

With only one problem instance, we need to be more care-
ful, but still get (see appendix for proof):

= 1 (but

Theorem 1. The linear setting of the MaxScore problem with
independent score distributions, deterministic runtimes, and
|I| =1, is NP-hard.

We believe that the complexity of sequential setting with
the same restrictions is at least as hard as the linear set-
ting, but have not proved it. Also note that the linear set-
ting MaxScore problem with |I| = 1 is non-trivial even if
we further restrict it to unit runtimes. For example, using a
natural greedy scheme that picks the agent with the best ex-
pected score can be suboptimal. Consider having agents A,
B, C, with time limit T=2. Suppose A always scores 100,
B scores 101 with probability 0.99 and O otherwise, and C
scores 200 with probability 0.001, and 99 with probability
0.999. A greedy scheme would first pick A, as it has the cer-
tain value 100, higher than the expected scores of B and C.
In fact the optimal policy is to pick B and C (expected score
just over 101, whereas anything containing A achieves less
than 101). The computational complexity of this setting of
MaxScore is, as far as we know, an open problem.

3.2 Approximation Algorithms

Using dynamic programming schemes it is possible to
achieve a pseudo polynomial algorithm for the case of
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Figure 1: Optimal Solution to the MaxScore problem

(known distribution) independent scores and runtimes, and
|| bounded by a constant, using the following scheme. (The
assumption that || is bounded by a constant is reasonable for
e.g. Albirds competitions, where |I| is 4 or 8.) Additionally,
we are assuming that score items (e.g. score for killing a pig
in Angry Birds) and runtimes are integer valued, and that the
time span and score items have a unary representation in the
input. The following dynamic programming value determi-
nation scheme (a variant of the Bellman equation) computes
the optimal policy, and has a time complexity linear in the
time span and the maximum score, and exponential in |I|.

Let OPT(rT,cR) be the optimal solution value to the
MaxScore problem with 7" remaining time, and current max-
imum score vector cR = (cRy,...,cR;,). The value de-
termination recursive equation for OPT'(rT, cR) appears in
Figure 1, where R' = (cRy,...,max{cR;,r},...,cRm),
and sp(D) is the support of distribution D. The value of
OPT(T,(0,...,0)) is that of the optimal policy at the ini-
tial state.

If the score distributions are continuous, or have too many
values, we can round them into bins, achieving a (1 — ¢)-
approximation to the optimal policy. Likewise discretizing
the runtime distributions is possible, but here near-optimality
is not guaranteed. Although the dynamic programming ap-
proximation scheme can be computed in pseudo-polynomial
time, it is still too computationally demanding to be practi-
cal. We would thus like to use a greedy scheme in practice,
and the one that comes to mind immediately is to use the
agent that has the best expected score, as essentially done in
[Stephenson and Renz, 2017]. A slightly better scheme is to
take into account the runtime, and use the ratio of expected
score over expected runtime. However, it is easy to show that
these schemes are far from optimal (as verified by the empir-
ical results).

For example, suppose we have only one problem instance
and two agents. We have already achieved a score of 10000,
and have time for exactly one more run. The first agent al-
ways scores 10000. The second agent scores 100000 with
probability 0.05, and otherwise fails and scores 0, thus its ex-
pected score is 5000. The above greedy schemes would select
the first agent and always get 10000, while the optimal policy
would obviously select the second agent, to possibly end up
with 100000 (with expected final score 10500). An improved
greedy scheme instead looks at the expected improvement to
the score over the current score, i.e. the value:

E[S(a,l,19) —max&l_alXS(a,l,j)] (1)
acA j=1

rather than just the expected score E[S(a,l,i)]. (Consider

S(a,l,j) to be 0 if agent a was not selected in round j to be

run on problem instance [.) Although the improved greedy

scheme is suboptimal even for unit runtimes, in practice it
does well (Section 4).

4 Experiments: Known IID

Quality/runtime tradeoffs for the independent model were ex-
amined for score and runtime distributions based on runs
of Albirds algorithms on original Angry Birds game levels.
Each algorithm was run 10 times on each level to obtain the
empirical distributions, which were then treated as if they
were the true distributions. Levels that caused issues with
the agent’s vision module were filtered out.

We applied the meta-agent to the following four existing
agents: AngryBER, ihsev, Eagle’s Wing, planA, which com-
peted in past AIBirds competitions. All tests were conducted
on Windows 10 using a machine with Intel(R) Core(TM) i7-
4700HQ 2.40GHz processor and 12 GB RAM. The evalua-
tion process was performed using different numbers of levels
and time budgets as described below:

1 for 1 t0 50 do

2 for Every number of levels and time budget T’

configuration in {2, 3,4} x {200, 400, 600, 800, 1000} do

Draw random levels uniformly from the level pool.

for 1 0 10000 do

while Time budget was not exceeded do

Compute policy and choose a move using
collected statistics as true distribution.

7 Execute the selected move (agent and

level) by drawing score and time

according to the statistics.

[ N7 B~

We also evaluated some of the algorithms on the settings
used in the AIBirds competition, solving 8 levels with T' =
1800 seconds.

The following optimization algorithms where compared:

1. Dynamic Programing (optimal): compute the recur-
rence relation in Figure 1, using memoization of the re-
sults from all recursive calls.

2. Binned Dynamic Programing(X,Y): same as the opti-
mal solution, with scores rounded up to the next mul-
tiple of X , and times rounded to the next multiple
of Y. We used this algorithmic scheme with X €
{1,1000, 10000} and Y € {1, 10, 25}.

3. Score Greedy: choose the agent and level that maximize
the expected score.

4. Rate Greedy: choose the agent and level that maximize
the expected score divided by the expected time given
that the time is less than or equal to the remaining time,
multiplied by the probability that the time is less or equal
to the remaining time.
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Figure 2: Optimization Algorithms Score Evaluation

5. Improved Score/Rate Greedy: same as the score/rate
greedy except for considering expected score/rate im-
provement instead of expected score.

6. Round Robin Score Greedy: the algorithm from
[Stephenson and Renz, 2017], which selects a level us-
ing round-robin, and chooses the agent that maximizes
the expected score for that level, preferring agents not
selected in previous attempts.

7. Play Single Agent(A): select a level using round-robin,
always with agent A. This scheme was evaluated for
each of the 4 possible agents.

8. Random: draw a combination of level and agent uni-
formly.

The results are shown in Figure 2. The scores in the plot are
normalized to the highest score for each setting. For clarity,
we show only a subset of the algorithms. For the Play Sin-
gle Agent policies, we show only the maximum value among
them. The score greedy and improved score greedy were
dominated by the rate greedy and improved rate greedy re-
spectively, thus the former two are not shown. Finally, we
showed the Binned Dynamic Programing(10000,10) as a sole
representative of its category, since it achieved the best bal-
ance between runtime and score. The optimal policy did not
always result in the best score, as the process is stochastic
and thus exhibits measurement noise. The results indicate
that the optimal policy is indeed the best in terms of scores.
However, the binned version and the improved rate greedy
achieved near-optimal results. When considering runtime and
space usage, the optimal solution could not solve instances
greater than 4 levels with 7" = 400 time budget. The binned
version was able to solve all instances, with a maximal over-
head of 13.7 seconds and a maximal memory usage of 52 MB
across all instances with 4 levels or less. However, it required
an average of 335 seconds and 270 MB of memory to han-
dle the full competition setting (8 levels with 1800 seconds
time budget). All the other algorithms ran in negligible time

(several milliseconds) and memory. This makes the improved
rate greedy the best algorithm in terms of balance between
score and resources. Note that in the experiments we did not
include the optimization runtime in the total available run-
time 7T'; but in a competition it must be. Also, the simulation
runtime of the agents averaged roughly 90 seconds, so 1800
seconds consists of about 20 rounds (agent runs).

5 TUnknown Distributions

A major point of competitions like Albirds (as well as other
competitions, such as in planning, SAT-solving, etc.) is that
they are done with previously unseen problem instances, so
the score and runtime distributions are unknown. The lat-
ter issue then becomes a learning problem, which can be
modeled by treating the agent performance quality as hid-
den random variables, with some assumed prior distributions
based on observing similar problem instances. We adopt a
naive learning scheme (described briefly below for indepen-
dent scores and runtimes for simplicity, as implemented for
the Albirds meta-agent).

5.1 Unknown IID Score and Runtime

In our naive learning scheme, we are assuming that agent per-
formance profiles of a previously unseen problem instance are
(almost) equal to their performance profile on some problem
instance(s) for which performance statistics were already col-
lected. Hence, we are essentially taking a case-based reason-
ing (CBR) approach to predicting the performance profile for
an unknown instance. However, we do not assume knowl-
edge of which of the previously seen performance statistics
fits the current instance.

Therefore, if we need to predict an agent performance
Q(a,l, 1) for round i of the current problem instance [ (which
we model as the score and runtime iid Ps(a,l) and Pr(a,l))
it makes sense to condition on the (unknown) agent perfor-
mance profile Q(a,l) for the current problem instance. Es-



Figure 3: Dependency model (Bayes net fragment)

sentially, what we need is a mapping from features to agent
performance (i.e. distributions over score and runtime distri-
butions), as we do in this paper.

The mapping we adopt here is simply a smoothed version
of the performance profiles of the K most similar instances.
(Smoothing is done in this paper by assigning scores and run-
times into bins.) That is, for every problem instance [ in the
training set, and every agent program a, collect and store the
score and runtime distributions estimate as ((a,!) indexed
by the feature values (vector F'(1)) for problem instance .

When a new problem instance ! is encountered online,
compute its feature vector values F'(1), and find the K most
similar instances [y, ...,lx according to some appropriately
defined similarity measure s(l;,!). Now we assume that the
agent performance for instance ! has a distribution over per-
formance profiles, and that it is equal to the (smoothed ver-
sion) of its performance profile for some instance [;, with
probability proportional to s(l;, ). That is, denote by B(a, ()
a K-valued random variable, with integer values denoting the
respective )(a, [;) profile. Then we have: P(B(a,l) =1i) =

s(l,0)
Sy s(ty)

The performance profiles describe both score and run-
time distributions, and additionally we assumed that these
are drawn i.i.d. given the value of B(a,l). The distribution
model topology is summarized in Figure 3, for each problem
instance [ (shown for one agent program). We have an ob-
servable feature vector variable F'(). Belief updating for this
conditionally i.i.d. model is straightforward, as this is a naive
Bayes model.

Obtaining a reasonable s(I,1") is a learning problem, which
was done here naively by normalizing all feature values to
[0, 1], and taking the inverse of the Euclidean distance as the
similarity. The result is a low-quality performance predictor.

Improving the prediction quality is a learning problem be-
yond the scope of this paper. In order to methodically exam-
ine robustness of the meta-reasoning to the prediction error,
we introduce a prediction cheating factor p;. For each prob-
lem instance [, use the naive learning scheme defined above,
but modify the distribution of B(a,l) to allow the true (pos-
sibly binned) Q(a,!) as an additional possible performance
profile (numbered 0). That is,

S(Zi, l)

P(B(a,l) =1i) = SE s(l.0)

(I—p1) 2

for 1 < i < K and P(B(a,l) = 0) = p;. The cheating
factor p; can be varied between 1 (that is, knowing the correct
distribution as in Section 4, and 0 (pure low-quality learned
model as above).

5.2 Experiments: Unknown IID

We represented each level’s score normalized by maxScorey,
an upper bound on achievable score in each level, that can
be computed using the features. We used the following sub-
set of features, described in [Stephenson and Renz, 2017;
Tziortziotis et al., 2016]: #Blocks, targetWidth, targetHeight,
closestObjDist, farthestObjDist, density, #Objects, #iceOb-
jects, #woodObjects, #stoneObjects, #Pigs,#helmetPigs, #no-
HelmetPigs, #Birds, #RedBirds, #YellowBirds, #BlueBirds,
#BlackBirds, and #WhiteBirds.

We tested the optimization algorithms using the same pro-
cess as in Section 4, where the algorithms had to rely on the
predicted distribution based on the naive learning scheme,
with a “cheating factor” p; € {0,0.2,0.4,0.6,0.8,1}. For
each p; value, we incorporated the resulting distribution in
the following algorithms: (1) the improved rate greedy de-
fined in Section 4, using the distribution of distributions with-
out performing belief updating (denoted as IRG); (2) a binned
version of the improved rate greedy with Bayesian belief up-
dating, using a zero value bin and 10 additional bins uniform
in (i - maxScore;, i+ 0.1 - maxScore],0 < ¢ < 9 (denoted
as BIRG). We used K = 30 in the learning process for both
algorithms. We also tested algorithm (1) with other K values
using p; = 0.

The results are shown in Table 1. Algorithm (1) using
p; = 0,k = 30 does not show any improvement over choos-
ing agent and level at random and the round robin greedy
algorithm (denoted as RRG). Choosing £ = 1 improved the
average performance, but still achieves results of moderate
quality. Nonetheless, even a slight improvement in the distri-
bution prediction (p; = 0.2) improves the scores by a factor
of 2, and an additional improvement (p; = 0.4) provides a
solution with 96% of an algorithm using the true distribu-
tions. The binned version of the algorithm is more robust
to the low quality in the predicted distributions, and shows a
more promising result given p; = 0; and better than the max
single agent. However, the coarse binning gives up accuracy
and is thus less able to take advantage of a possible improve-
ment of the distribution prediction quality.

6 Agent Implementation Issues

In the conditionally i.i.d. model, since B(a,l) is unobserv-
able, but its current distribution (thus belief state) changes
given new observations of T'(a,l,4) and S(a,l,%), we now
have a POMDP that we cannot hope solve optimally, espe-
cially in real time. Instead, we can solve an MDP where the
T(a,l,1) and S(a,l,i) are assumed to be i.i.d. as before, but
based on the current belief state of B(a, ).

That is, we can do the belief updating given the new ob-
served scores and runtimes, but in the policy computation
act as if future updates are not observed. Then one can re-
compute the MDP policy after each observation and belief
update. However, the MDP solution was also quite computa-
tionally intensive, and re-computation makes it even more so.



Table 1: Optimality Fraction Results of the Learning Process with Different p; Values

Number Of Levels Optimality
Algorithm 2 3 4 Fraction
200 400 600 800 1000 | 200 400 600 800 1000 [ 200 400 600 800 1000 | (Average)
IRG-p; =0 038 047 047 048 058 | 028 043 039 049 040 | 022 0.19 030 026 0.37 | 037
IRG-p; =0.2 082 080 0.78 079 077 | 079 0.76 0.80 0.76 0.75 | 0.79 0.73 0.75 0.68 0.71 | 0.76
IRG-p; =04 098 094 097 095 094 | 098 096 096 095 094 | 096 097 094 095 094 | 095
IRG-p; =0.6 098 098 099 098 097 | 098 098 099 098 098 | 098 099 098 098 098 | 098
IRG-p; =0.8 098 099 099 099 099 | 098 099 099 1.00 099 | 098 099 099 099 0.99 | 0.99
IRG - p; = 1(true) 1.00 1.00 1.00 1.00 1.00 |1.00 1.00 1.00 100 1.00 |1.00 1.00 1.00 1.00 1.00 | 1.00
BIRG-p; =0 0.71 0.64 0.70 0.63 0.64 | 062 057 059 051 053 | 064 051 046 044 046 | 0.55
BIRG-p; =0.2 0.88 0.78 0.76 0.73 0.70 | 0.85 0.68 0.60 0.51 055 | 0.86 059 048 049 046 | 0.61
BIRG-p; =04 0.89 081 079 071 071 | 085 0.66 059 052 056 | 0.86 059 051 048 047 | 0.62
BIRG- p; = 0.6 091 082 079 072 071 | 087 0.65 060 052 057 |08 058 050 049 046 | 0.62
BIRG - p; = 0.8 090 082 0.79 073 070 | 0.88 0.67 0.61 052 056 |0.89 0.60 050 050 047 | 0.63
BIRG - p; = 1(true) | 092 082 0.79 0.72 0.71 | 091 0.68 0.61 0.53 056 | 089 0.61 0.51 049 047 | 0.63
IRG-k=1 0.60 055 050 0.73 047 | 040 051 062 053 047 | 035 039 041 046 043 | 0.49
IRG-k=5 040 063 043 062 052 | 027 039 052 045 043 | 023 031 028 028 0.37 |0.40
IRG-k =10 038 052 049 0.60 063 | 034 041 056 054 051 | 027 030 038 036 045 | 045
IRG -k =20 029 049 048 051 059 | 026 039 041 046 044 | 020 023 033 028 0.37 | 038
Random 032 045 044 062 055 | 029 034 043 045 047 | 025 028 036 037 041 | 041
RRG-p; = 1(true) | 0.30 049 048 0.68 0.61 | 030 040 049 050 052 | 024 033 043 042 041 | 045

As the improved greedy scheme performed almost as well as
the MDP solution w.r.t. optimality, we no longer considered
using the MDP solution, for practical reasons.

Our meta-agent implementation starts by collecting infor-
mation on all levels using the provided vision module. Based
on this, the meta-agent constructs an objects-tree for each
level, extracts features from the objects-trees, and predicts a
performance profile for each level and agent pair. Then, the
meta-agent applies the improved greedy scheme to select a
pair of agent and a level to play. The meta-agent sends the se-
lection to the server and observes the results of the run. The
observations are used for belief updating. The select-and-play
process repeats until the time limit is reached.

Experiments with the actual meta-agent take much longer
than those based solely on the distributions, due to the need to
average numerous runs and level combinations, compounded
with the inherent 30 minutes runtime per run. In prelim-
inary results, running the agent on past competition lev-
els (between 2014 and 2016), a total of 72 levels (8 at a
time), the improved-greedy based meta-agent achieved a to-
tal score of 3,974, 150, compared to PlanA (3, 280, 570), ih-
sev (2,891, 520), AngryBER (2,479, 010) and Eagle’s Wing
(2,907, 890). Note that the above 4 agents were the ones actu-
ally used by the meta-agent, and all of them contributed to the
total score of the meta-agent. The hyper-agent of [Stephen-
son and Renz, 2017] achieved an impressive total score of
3,822, 660; However, it uses 8 agents as oppose to our 4.

7 Discussion

In this paper we defined the MaxScore optimization prob-
lem, analyzed its computational complexity (NP-hard even
under extreme restrictions), and suggested approximation al-
gorithms for known independent distributions. In practice,
based on empirical evaluation on Al birds, it turns out that
a greedy algorithm based on expected improvement is near-
optimal. Despite the latter having no theoretical guarantees,
it currently seems to be the only viable alternative for real-

time computation. Applying these results to unknown distri-
butions requires learning performance profiles given problem
instance features. A naive learning scheme applicable to the
Albirds application was proposed. This results in significant
error in the predicted distributions, which degrades the meta-
reasoning results. Nevertheless, the greedy algorithm is still
the better option, especially if the distribution model is up-
dated using scores and runtimes observed during the run.

The MaxScore problem is closely related to algorithm se-
lection, as originally defined by Rice in 1976 [Rice, 1976].
Algorithm portfolios [Gomes and Selman, 2001; Huberman
et al., 1997] are a natural and popular extension of the idea
of algorithm selection. Such techniques are based on mini-
mizing risk in economics. This approach defines a collection
of algorithms (a portfolio) and establish a resource allocation
to the algorithms in the portfolio in order to solve a given
problem instance (instead of choosing a single algorithm for
a given problem instance). This field has been studied ex-
tensively in the last decades, including works on different
computational settings (parallel, sequential or in-between),
many applications with outstanding results [Xu er al., 2008;
Hoos et al., 2014; Kadioglu et al., 2010; Kadioglu et al.,
2011] and even meta-level techniques for choosing a selector
[Lindauer et al., 2015]. Most common settings of algorithm
portfolios focus on finding a solution to a single given prob-
lem instance. Our setting generalizes the meta-level decision
problem solved in algorithm portfolios to choosing which
problem instance to work on, as well as selecting algorithms
to use at any given time.

A significant part of the research on algorithm portfolios
and multi-armed bandits focuses on learning issues. E.g. in
[Kotthoff, 2016], the focus is on analyzing problem features
and applying different varieties of machine learning tech-
niques in order to find scheduling policies for the portfolios.
In this paper we achieved good results despite using a rather
naive learning scheme to obtain a mapping from features to
score and runtime distributions.
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Appendix: Proof of Theorem

For convenience, Theorem 1 is re-stated here:

Theorem 1. The linear setting of the MaxScore problem
with independent score distributions, deterministic runtimes,
and |I| = 1, is NP-hard.

Proof: by reduction from the optimization version of knap-
sack ([Garey and Johnson, 1979], problem number [MP9]),
re-stated below. Given a set of items S = {s1,...s,,}, each
with a positive integer weight w; and a positive integer value
v;, a weight limit W, find a sub-multiset S of S with a maxi-
mal total value, subject to: total weight of S at most W.

In the reduction, each agent represents an item in the Knap-
sack problem, where Pr(a;,l) = [1 : w;] and Ps(a;, 1) =
[e : v;, 1 — e : 0]. As this is a simple one-to-one mapping, we
abuse the notation and treat the agents as if they are actually
the respective elements from S in the Knapsack problem. In
the MaxScore problem, let:

w 1
T=W, H= i, M= = —
’ 33239“}“ migwi’ ¢ M?2H +1
si€

Suppose that S is a candidate solution to the MaxScore
problem, where m = |S| < n. Assume w.lo.g. that
S = {s1, 89, ..., $m} and that the items are sorted in non-
descending order of values v;. Denote by P(S) expected

value from selecting the items in the sequence S as a policy.
Then:

P(S) = ivie(l S ivis
i=1 i=1

On the other hand, we have:

m

P(S) = Zvis(l S ivﬁ(l —a)m

i=1
m

> Zvie(l —e)M
i=1

From Bernoulli’s inequality, we have:

M 1
1—e)M>1-Me=1- 1-—
(1-e)% 2 ¢ MEH+1  MH
Therefore:
m m m
1 Zi:ﬂizg
ZZ’UZ'E—E:E(Z’UZ—l)
=1 i=1

Now let S be an optimal solution to the MaxScore problem.
Since S satisfies the time constraint, we have » .- w; <
T = W, so S satisfies the weight constraint in the Knap-
sack problem and is thus a solution therein. Assume in
contradiction that there exists a legal solution S’ to Knap-
sack s.t. > Vi > Y cgv;. Since the values of the
items in knapsack are integers, we know that Zs,:e gV =

(Zsies v;) + 1. Thus, as |S’] < %;
P(S/) > 5( Z v — ]_) > 5(2 Ui) > P(S)

s, €8’ $; €S

As S’ satisfies the timing budget in the MaxScore problem,
it is a solution better than S, a contradiction. So S is also an
optimal solution to the Knapsack problem. [
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