Angry-HEX: An Angry Birds-playing Agent based on HEX-Programs

Francesco Calimeri' and Stefano Germano!? and Nikolaus Funk? and
Bianca Lohnert? and Hesham Morgan®? and Christoph Red]? and
Zeynep G. Saribatur? and Peter Schiiller?

calimeri@mat.unical.it, stefanogermanoO@gmail.com, e1425838@student.tuwien.ac.at

el525825@student .tuwien.ac.at, heshammse@gmail.com, redl@kr.tuwien.ac.at

zeynep@kr.tuwien.ac.at,

peter.schueller@tuwien.ac.at

! Computer Science Group — Department of Mathematics and Computer Science — University of Calabria, (Rende, Italy)

2 Knowledge-Based Systems Group — Institut fiir Logic and Computation — Technische Universitit Wien, (Vienna, Austria)

3 Information Systems Group (ISG) — Department of Computer Science — University of Oxford, (Oxford, UK)

4 Computer Science Engineering Group (CSEN) — Media Engineering and Technology (MET) — German University in Cairo, (Cairo, Egypt)

Abstract

A distinctive characteristic of our agent is that it
uses a declarative, logic-programming based mod-
ule for reasoning about the target to shoot and the
level to play, implemented by means of so-called
HEX-programs [Eiter ef al., 2016], i.e., by means
of Answer Set Programming (ASP) with external
sources and other extensions.

The Angry-HEX agent

Our agent, called Angry-HEX, builds on the Base Framework
provided by the organizers and extends it with declarative
means for decision making models by means of an Answer
Set Programming (ASP). Declarative logic programming con-
trols two different layers for Angry-HEX: the Tactics layer,
which plans shots, and decides how to complete a level; and
the Strategy layer, which decides the order of levels to play
and repeated attempts to solve the same level.

Tactics is declaratively realized by HEX-programs, i.e., an
extension of ASP to incorporate external sources of compu-
tation via so-called external atoms. It is implemented using
the HEXLITE solver and computes optimal shots based on in-
formation about the current scene and on domain knowledge
modelled within the HEX-program. Its input comprises scene
information encoded as a set of logic program facts (posi-
tion, size and orientation of pigs, ice, wood and stone blocks,
slingshot, etc.); its output are answer sets that contain a ded-
icated atom describing the target to hit, and further informa-
tion about the required shot. Geometric calculations are inte-
grated via external atoms.

The agent of this year significantly differs from previous
years’ agents ([Calimeri et al., 2016]). The aim of this year’s
agent was to plan multiple actions in advance to have bet-
ter strategies planned over predicated successor level states.
HEXLITE [Schiiller, 2019] is used instead of DLVHEX, which
makes the setup of the agent easier and gives higher per-
formance but supports less expressive external computations.

The number of possible actions for each turn of the agent is
exponential in the number of blocks of the level, and some
levels have more than 50 blocks. Simulating physics for such
levels is also expensive. Therefore, our agent implements an
abstract model where the level is converted into a graph rep-
resentation, where every object is represented as a node and
the distance between objects is represented as the weight of
the edges between the nodes. The agent searches over all pos-
sible shots, finds the optimal solution over all possile actions
while minimizing on the number of actions, and maximiz-
ing on the number of blocks eliminated in a given level. Our
agent predicts up to 4 successor states at every state of the
level, using a planning problem that is formulated in the HEX
language, where external computations represent the trigono-
metric equations that are used to build the abstract graph.
The Strategy layer decides, at the end of each level, which
level to play next. This layer is also realized declaratively
as an (ordinary) ASP program encoding our strategy on three
priority levels: (1) each available level is played once; (2) lev-
els where the agent score differs most from the current best
score are selected; (3) levels where Angry-HEX achieved a
score higher than the current best scores and that have the
minimum difference from the best score, are selected. For
each level, the Strategy layer keeps tracks of previously
achieved scores and previously selected initial target objects.

References

[Calimeri et al., 2016] F Calimeri, M Fink, S Germano, A Humen-
berger, G Ianni, C Redl, D Stepanova, A Tucci, and A Wimmer.
Angry-HEX: An artificial player for angry birds based on declar-
ative knowledge bases. IEEE Trans. Comput. Intellig. and Al in
Games, 8(2):128-139, 2016.

[Eiter et al., 2016] T Eiter, M Fink, G Ianni, T Krennwallner,
C Redl, and P Schiiller. A Model Building Framework for An-
swer Set Programming with External Computations. Theory and
Practice of Logic Programming, 16(04):418-464, 2016.

[Schiiller, 2019] P Schiiller. The Hexlite solver. In European Conf.
on Logics in Artificial Intelligence, pages 593-607, 2019.


https://demacs-unical.github.io/Angry-HEX
https://www.mat.unical.it/ComputerScience/PeopleCS
https://www.mat.unical.it/demacs
http://www.unical.it
http://www.kr.tuwien.ac.at
http://www.informatik.tuwien.ac.at/fakultaet/institute/e192
https://www.tuwien.ac.at
http://www.cs.ox.ac.uk/isg
http://www.cs.ox.ac.uk
http://www.ox.ac.uk
http://met.guc.edu.eg
http://www.guc.edu.eg/
https://demacs-unical.github.io/Angry-HEX
https://demacs-unical.github.io/Angry-HEX
https://demacs-unical.github.io/Angry-HEX
https://demacs-unical.github.io/Angry-HEX

